Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Ta có : \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3.\sqrt[3]{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}=\frac{3a}{4}\)
Tương tự : \(\frac{b^3}{\left(1+a\right)\left(1+c\right)}\ge\frac{3b}{4}\) ; \(\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{3c}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\left(a+b+c\right)\ge\frac{3}{4}.\sqrt[3]{abc}=\frac{3}{4}\)
=> Max A = 3/4 <=> a = b = c = 1
Gọi a là cạnh của tam giác đều, ta có đường cao là: \(\frac{a\sqrt{3}}{2}\)
Mà S tam giác bằng: \(\frac{a.h}{2}\)\(\frac{\Leftrightarrow a.\left(\frac{a.\sqrt{3}}{2}\right)}{2}\)
\(\frac{\Leftrightarrow a.a\sqrt{3}}{4}\)
\(\frac{\Leftrightarrow a^2.\sqrt{3}}{4}\)
=> a2=9=> a=3
Đường tb của tam giác: 3/2=1,5cm
\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)phân tích mấy cái hằng ở dưới ra
A=\(\frac{2x-1}{\left(x-3\right)\left(x-2\right)}=0\)
Mà A đã được xác định nên ta nhân chéo:
\(\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Trung bình cộng của ba số cuối bằng:
\(\frac{\left(54.5\right)-\left(48.2\right)}{3}=\frac{270-96}{3}=58\)
Vậy: TBC của ba số còn lại là 58.
Sao chữ nhỏ thế ? Mình chả thấy được gì .
bay gio nguoi ta cai tien roi