Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=-1 thì P=3+5=8
Khi x=0 thì P=0+5=5
Khi x=3 thì P=27+5=32
b: \(3x^2+5\ge5>0\)
nên P>0
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
câu 1:
a2+b2+c2+42 = 2a+8b+10c
<=> a2-2a+1+b2 -8b+16+c2-10c+25=0
<=> (a-1)2+(b-4)2+(c-5)2=0
<=>a=1 và b=4 và c=5
=> a+b+c = 10
ta có 2(a2+b2)=5ab
<=> 2a2+2b2-5ab=0
<=> 2a2-4ab-ab+2b2=0
<=> 2a(a-2b)-b(a-2b)=0
<=> (a-2b)(2a-b)=0
<=> a=2b(thỏa mãn)
hoặc b=2a( loại vì a>b)
với a=2b =>P=5b/5b=1
a)
M = 2x2 + 9y2 - 6xy - 12y + 2018
2M = 4x2 + 18y2 - 12xy - 24y + 4036
= (4x2 - 12xy + 9y2) + (9y2 - 24y + 16) + 4020
= (2x - 3y)2 + (3y - 4)2 + 4020 \(\ge4020\)
=> \(M\ge2010\)
Dấu "=" xảy ra khi \(x=2\) và \(y=\dfrac{4}{3}\)
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
1. \(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)
Dễ thấy \(x=0\) ko phải là nghiệm của pt
Chia tử và mẫu cho x, ta được:
\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\) (*)
Đặt \(t=4x+\dfrac{7}{x}-8\) thì:
(*) \(\Rightarrow\dfrac{4}{t}+\dfrac{3}{t-2}=1\)
Quy đồng lên tìm được t, sau đó dễ dàng tìm được x.
Giải cụ thể từng bước cho dễ hiểu nhé các bạn
áp dụng ở khung nội dung mà làm, bạn hỏi mấy bài cơ bản vậy thì đi thi sao nắm được