Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2^x}=2\\ \left(\sqrt{2^x}\right)^2=2^2\\ 2^x=4\\ 2^x=2^2\\ x=2\\ \Rightarrow x^2=2^2\\ \Rightarrow x^2=4\)
\(\sqrt{x^2}=2\\\left(\sqrt{x^2}\right)^2=2^2\\ x^2=4\\ x^2=2^2\\\Rightarrow x=2\)
Bài 4:
a: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó: ΔAHD=ΔAKD
Suy ra: AH=AK
c: Đặt \(\widehat{A}=a;\widehat{C}=c\)
Theo đề, ta có: \(\left\{{}\begin{matrix}a=3c\\a=180-2c\end{matrix}\right.\Leftrightarrow3c=180-2c\)
=>c=36
=>\(\widehat{ACB}=\widehat{ABC}=36^0\)
=>\(\widehat{BAC}=108^0\)
có tới 19 người gửi rồi! họ là những TT.BẠn cũng đừng gắng công vô ích
\(\frac{B}{A}=\frac{2^2+4^2+6^2+...+200^2}{1^2+2^2+...+100^2}=\frac{\left(1.2\right)^2+\left(2.2\right)^2+...+\left(100.2\right)^2}{1^2+2^2+...+100^2}\)
\(=\frac{1^2.2^2+2^2.2^2+...+100^2+2^2}{1^2+2^2+...+100^2}\)
\(=\frac{\left(1^2+2^2+...+100^2\right).2^2}{1^2+2^2+100^2}\)
\(=2^2=4\)
Vậy \(\frac{B}{A}=4\)
Sửa lại: ( tại nhìn bé quá, tưởng mũ 3 -> mũ 2 )
\(\frac{B}{A}=\frac{2^3+4^3+6^3+...+200^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=\frac{\left(1.2\right)^3+\left(2.2\right)^3+...+\left(100.2\right)^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=\frac{1^3.2^3+2^3.2^3+...+100^3.2^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=\frac{\left(1^3+2^3+...+100^3\right)2^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=2^3=8\)
Vậy \(\frac{B}{A}=8\)
\(\left\{{}\begin{matrix}\widehat{CBA}< 135\Rightarrow\widehat{ABD}>45\Rightarrow\widehat{BAD}< 45\Rightarrow BD< DA\\\widehat{ACD}< 45\Rightarrow\widehat{CAD}>45\Rightarrow AD< CD\\\end{matrix}\right.\)
Làm toán hình thì phải lập luận rõ ràng, trong toán hình cái điểm lập luận là cao nhất, nếu không có thì 0 điểm, chế làm như vậy có phải đẩy người ta xuống 0 điểm không? Làm ơn bỏ ngay cái ngoặc tròn (và) của lớp 8 đi!
a) Ta có \(\sqrt{64}>\sqrt{63}\)
mà \(\sqrt{64}=8\)
=> 8>\(\sqrt{63}\)
b)\(\sqrt{170}>\sqrt{169}\)
mà \(\sqrt{169}=13\)
=> \(\sqrt{170}>13\)
c) \(\sqrt{227}>\sqrt{225}\)
mà \(\sqrt{225}=15\)
=> \(\sqrt{227}>15\)
d)Vì \(\sqrt{3}< \sqrt{5}\)
\(\sqrt{14}< \sqrt{16}\)
nên \(\sqrt{3}+\sqrt{14}< \sqrt{5}+\sqrt{16}\)
mà \(\sqrt{16}=4\)
=> \(\sqrt{3}+\sqrt{14}< \sqrt{5}+4\)
a.
=> a // b
b.
a // b
=> A2 = B2 (2 góc so le trong)
mà B2 = 750
=> A2 = 750
a // b
=> A3 + B2 = 1800 (2 góc trong cùng phía)
A3 + 750 = 1800
A3 = 1800 - 750
A3 = 1050
mà A3 = A1 (2 góc đối đỉnh)
=> A1 = 1050
^^