giải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

â)ĐK;`x-2>=0`

`<=>x>=2`

c)ĐK:`2017/x>=0(x ne 0)`

Mà `2017>0`

`<=>x>0`

e)ĐK:`x^2+2017>=0`

`<=>x^2>=-2017AAx in RR`

b)ĐK:`2-3x>=0`

`<=>3x<=2`

`<=>x<=2/3`

d)ĐK:`(-2017)/(5-x)>=0(x ne 5)`

`<=>2017/(x-5)>=0`

Mà `2017>0`

`<=>x-5>0<=>x>5`

f)ĐK:`1-x^2>=0`

`<=>x^2<=1`

`<=>-1<=x<=1`

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

6 tháng 9 2016

Theo mình nghĩ thì A,O,M sẽ nằm trên cùng một đường thẳng thì góc AOM là lớn nhất(tức là thuộc đường kính)

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)

Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).

\(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)

Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

11 tháng 7 2017

hahacảm ơn bn nhiều lắm

13 tháng 7 2017

c)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

=\(\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

=\(\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}-\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

=\(\dfrac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|}{\sqrt{2}}\)

=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

=\(\dfrac{-2}{\sqrt{2}}\)

=\(-\sqrt{2}\)

22 tháng 10 2017

Bài 4:

a)

\(M=x+\sqrt{2-x}=-\left(2-x\right)+\sqrt{2-x}+2\)

Đặt \(\sqrt{2-x}=m\left(m\ge0\right)\)

\(\Rightarrow M=-m^2+m+2\)

\(=-\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{1}{4}+2\)

\(=\dfrac{9}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(m=\dfrac{1}{2}\Leftrightarrow\sqrt{2-x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{7}{4}\)

b)

\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)

\(\Leftrightarrow5x^2+24x+9y^2-48y-12xy+80=0\)

\(\Leftrightarrow\left(4x^2+9y^2+64-12xy-48y+32x\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\) (loại)

Vậy . . .

22 tháng 10 2017

Bài 2:

a)

\(M=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)

\(=\dfrac{x^5-5x^3+4x}{30}\)

\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)

\(=\dfrac{x\left(x^2-4\right)\left(x^2-1\right)}{30}\)

\(=\dfrac{x\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}{30}\)

Suy ra nếu x nguyên thì M cũng nguyên ^.^

Bài 3:

a) Chứng minh \(VP\ge VT\) dùng Cauchy Shwarz dạng Engel.

b) Xét \(M=2a^2+2b^2+2\)

\(=\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\)

\(\ge2a+2b+2ab\) (áp dụng bđt AM - GM)

\(\Rightarrow a^2+b^2+1\ge a+b+ab\left(\text{đ}pcm\right)\)