K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

Theo mình nghĩ thì A,O,M sẽ nằm trên cùng một đường thẳng thì góc AOM là lớn nhất(tức là thuộc đường kính)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

5 tháng 6 2016

ABCHabM

Mình giải thế này nhé :))

Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => \(AM=\frac{1}{2}BC\)(vì tam giác ABC vuông)

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; \(AH=\sqrt{ab}\)(1)

Mặt khác, ta cũng có ; \(AH\le AM=\frac{BC}{2}=\frac{a+b}{2}\)(2)

Từ (1) và (2)  suy ra được : \(\sqrt{ab}\le\frac{a+b}{2}\)(Đpcm)

3 tháng 9 2019

\(\sqrt{2x+1}=x-3\)

\(\left(\sqrt{2x+1}\right)^2=\left(x-3\right)^2\)

\(2x+1=x^2-6x+9\)

\(2x+1-x^2+6x-9=0\)

\(-x^2+8x-8=0\rightarrow x^2-8x+8=0\)

\(x_1=4+2\sqrt{2}\)

\(x_2=4-2\sqrt{2}\)

3 tháng 9 2019

ĐK: \(2x+1\ge0\Leftrightarrow x\ge-\frac{1}{2}\)

\(pt\Leftrightarrow2x+1=\left(x-3\right)^2\\ \Leftrightarrow2x+1=x^2-6x+9\\ \Leftrightarrow x^2-8x+8=0\\ \Leftrightarrow x^2-2.x.4+4^2-4^2+8=0\\ \Leftrightarrow\left(x-4\right)^2-8=0\\ \Leftrightarrow\left(x-4-2\sqrt{2}\right)\left(x-4+2\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-4-2\sqrt{2}=0\\x-4+2\sqrt{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4+2\sqrt{2}\\x=4-2\sqrt{2}\end{matrix}\right.\)

Vậy...............................

21 tháng 11 2021

giải bài 8 -> 11 giúp mình đang cần ;-;, mấy bài kia mình làm rồi nhưng chưa bt đúng sai

 

3 tháng 9 2019

\(2-\sqrt{x^2+2x+9}=2x+3\)

\(\Rightarrow\sqrt{x^2+2x+9}=-\left(2x+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\left(2x+1\right)\ge0\\x^2+2x+9=\left[-\left(2x+1\right)\right]^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{2}\\x^2+2x+9=4x^2+4x+1\end{matrix}\right.\)

\(\Rightarrow4x^2+4x+1-x^2-2x-9=0\)

\(\Rightarrow3x^2+2x-8=0\)

\(\Rightarrow3x^2+6x-4x-8=0\)

\(\Rightarrow3x\left(x+2\right)-4\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(3x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\left(KTMĐK\right)\\x=\frac{4}{3}\left(TMĐK\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình là 4/3

2 tháng 9 2019

ĐKXĐ : \(\left\{{}\begin{matrix}x+9\ge0\\2x+4\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ge-9\\2x\ge-4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ge-9\\x\ge-2\end{matrix}\right.\)

<=> \(x\ge-2\)

Ta có : \(\sqrt{x+9}=5-\sqrt{2x+4}\)

<=> \(\sqrt{x+9}+\sqrt{2x+4}=5\)

<=> \(\left(\sqrt{x+9}+\sqrt{2x+4}\right)^2=5^2\)

<=> \(\left(x+9\right)+2\sqrt{\left(x+9\right)\left(2x+4\right)}+\left(2x+4\right)=25\)

ĐKXĐ : \(x\le4\)

=> \(-2\le x\le4\)

<=> \(x+9+2\sqrt{\left(x+9\right)\left(2x+4\right)}+2x+4=25\)

<=> \(2\sqrt{\left(x+9\right)\left(2x+4\right)}=25-x-9-2x-4\)

<=> \(2\sqrt{\left(x+9\right)\left(2x+4\right)}=12-3x\)

<=> \(\left(2\sqrt{\left(x+9\right)\left(2x+4\right)}\right)^2=\left(12-3x\right)^2\)

<=> \(4\left(x+9\right)\left(2x+4\right)=\left(12-3x\right)^2\)

<=> \(4\left(2x^2+18x+4x+36\right)=144-72x+9x^2\)

<=> \(8x^2+72x+16x+144=144-72x+9x^2\)

<=> \(8x^2+72x+16x+144-9x^2-144+72x=0\)

<=> \(-x^2+160x=0\)

<=> \(x\left(160-x\right)=0\)

<=> \(\left\{{}\begin{matrix}x=0\\160-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\left(TM\right)\\x=160\left(L\right)\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là x = 0 .

4 tháng 9 2019

ĐKXĐ : x> -2

\(\sqrt{2x+\sqrt{6x^2+1}}\) = x + 1

=> (\(\sqrt{2x+\sqrt{6x^2+1}}\))2 = (x+1)2

=> 2x+\(\sqrt{6x^2+1}\) = x2+2x+1

=> \(\sqrt{6x^2+1}\) = x2+1

=> 6x2 +1 = (x2+1)(x2+1)

=> 6x2 +1 = x4+2x2+1

=> -x4+4x2 = 0

=> x2(4-x2) = 0

=>x2(2-x)(2+x) = 0

=> x2 =0, 2-x=0 , 2+x =0

=> x=0(TMĐKXĐ)

x=2(TMĐKXĐ)

x= -2 (KTMĐKXĐ)

Vậy ........

4 tháng 9 2019

\(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

16 tháng 8 2019

\(\frac{1}{3\sqrt{5}-7}\)=\(\frac{3\sqrt{5}+7}{\left(3\sqrt{5}-7\right)\left(3\sqrt{5}\right)+7}\)=\(\frac{3\sqrt{5}+7}{\left(3\sqrt{5}\right)^2-7^2}\)=\(\frac{3\sqrt{5}+7}{-4}\)