G uch


Cho góc xAy trên tia Ax lấy...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

A B C x D E y

Xét  tam giác \(ABE\) \(\&ADC\)

\(BAE=ADC\)(góc chung)

\(\frac{AB}{CD}=\frac{8}{10}=\frac{4}{5};\frac{AE}{AC}=\frac{12}{15}=\frac{4}{5}\)

\(\Rightarrow tamgiácABE~tamgiacADC\left(C.G.C\right)\)

b) Từ tam giác \(ABE\) \(~\)tam giác \(ADC\)\(\Rightarrow\frac{AB}{CD}=\frac{BE}{DC}\Rightarrow DC=\frac{AD\cdot BE}{AB}=\frac{10\cdot10}{8}=12,5\)

c) Từ tam giác \(ABE~\)tam giác \(ADC\left(cmt\right)\)

\(\Rightarrow\frac{S_{ABE}}{S_{ADC}}=\left(\frac{AB}{AD}\right)^2=\left(\frac{8}{10}\right)^2\left(\frac{4}{5}\right)^2=\frac{16}{25}\)

4 tháng 5 2016

nếu bạn muốn họ trả lời nhanh thì bạn tốt nhật ko nên bỏ chữ đâu nha

4 tháng 5 2016

là sao bạn k hiểu

17 tháng 5 2018

a. Xét \(\Delta ABE\)\(\Delta ADC\) có:

\(\widehat{A}\left(chung\right)\)

\(\dfrac{AB}{AD}=\dfrac{8}{10}=\dfrac{4}{5}va\dfrac{AE}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\)

Do đó: \(\Delta ABE\infty\Delta ADC\left(c-g-c\right)\)

b. Vì \(\Delta ABE\infty\Delta ADC\left(cmt\right)\)

=> \(\dfrac{AB}{AD}=\dfrac{BE}{DC}\) (1)

hay AB.DC = AD.BE

c. Thay số vào (1) Ta có:

\(\dfrac{8}{10}=\dfrac{10}{DC}\)

=> DC = 12,5 cm

11 tháng 4 2020

a. Xét ΔABEΔABEΔADCΔADC có:

ˆA(chung)A^(chung)

ABAD=810=45vaAEAC=1215=45ABAD=810=45vaAEAC=1215=45

Do đó: ΔABE∞ΔADC(c−g−c)ΔABE∞ΔADC(c−g−c)

b. Vì ΔABE∞ΔADC(cmt)ΔABE∞ΔADC(cmt)

=> ABAD=BEDCABAD=BEDC (1)

hay AB.DC = AD.BE

c. Thay số vào (1) Ta có:

810=10DC810=10DC

=> DC = 12,5 cm

chúc bạn học tốt hihi

a: Xét ΔABE và ΔADC có

AB/AD=AE/AC

góc BAE chung

DO đó:ΔABE đồng dạng với ΔADC

b: ta có: ΔABE đồng dạng với ΔADC

nên AB/AD=BE/DC
hay \(AB\cdot DC=AD\cdot BE\)

c: Ta có: AB/AD=BE/DC

nên 10/DC=8/10=4/5

=>DC=12,5(cm)

a: Xét ΔABE và ΔADC co

AB/AD=AE/AC

góc A chung

=>ΔABE đồng dạng vói ΔADC

b: ΔABE đồng dạng vói ΔADC

=>AB/AD=AE/AC=BE/DC

=>AB*DC=AD*BE

c: BE/DC=AB/AD

=>10/CD=8/12=2/3

=>CD=15cm

d: Xét ΔIBC và ΔIDE có

góc ICB=góc IED

góc BIC=góc DIE

=>ΔIBC đồng dạng với ΔIDE

=>IB/ID=IC/IE

=>IB*IE=ID*IC

7 tháng 6 2021

E A C D F I y x

a, Xét \(\Delta AEF\) và \(\Delta ADC\) có:

\(\widehat{A}\) chung

\(\dfrac{AE}{AF}=\dfrac{3}{6}=\dfrac{1}{2};\dfrac{AD}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AD}{AC}\)

Vậy \(\Delta AEF\sim\Delta ADC\left(c.g.c\right)\)

b, Vì \(\Delta AEF\sim\Delta ADC\) (cmt)  \(\Rightarrow\widehat{DFI}=\widehat{ECI}\)

Lại có \(\widehat{DIF}=\widehat{ECI}\left(gt\right)\)    \(\Rightarrow\Delta DIF\sim\Delta EIC\left(g.g\right)\)

\(\Rightarrow\dfrac{S_{IDF}}{S_{IEC}}=\left(\dfrac{DF}{EC}\right)^2=\left(\dfrac{2}{5}\right)^2=\dfrac{4}{25}\)

-Chúc bạn học tốt-

 

a: Xét ΔAEF và ΔADC có

AE/AD=AF/AC
góc A chung

=>ΔAEF đồng dạng với ΔADC

b: Xét ΔDIF và ΔEIC có

góc IFD=góc ICE

góc DIF=góc CIE

=>ΔDIF đồng dạng với ΔEIC

=>\(\dfrac{S_{DIF}}{S_{EIC}}=\left(\dfrac{DF}{EC}\right)^2=4\)

8 tháng 6 2023

A B C D E I

a) chứng minh \(\Delta ABC=\Delta ADC\)

xét 2 tam giác vuông ABC và ADC:

có AC: cạnh chung

AD=AB (gia thiết) 

=> \(\Delta ABC=\Delta ADC\) (2cgv)

 

b) chứng minh DC//BE

xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE

 

c) chứng minh BE = 2AI

ta có BEDC là hình bình hành => BE=DC

lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)

chúc em học tốt

8 tháng 6 2023

Cậu tự vẽ hình nhé.

a,  Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:

                       AB = AD(gt)

                       AC chung 

          \(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)

b, Ta có \(DB\perp EC\) tại \(A\)

 mà \(DA=AB\left(gt\right)\)

        \(AE=AC\left(gt\right)\)

\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )

\(\Rightarrow DC//BE\) ( tính chất hình thoi )

c,   Xét \(\Delta DAC\) vuông tại A có:

      I là trung điểm của DC 

 \(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)

\(\Rightarrow2AI=DC\) 

Lại có DC = EB ( DCBE là hình thoi )

\(\Rightarrow2AI=BE\)