Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta\)AEF và \(\Delta\)ADC có:
\(\widehat{A}\)chung
\(\frac{AE}{AF}=\frac{3}{6}=\frac{1}{2};\frac{AD}{AC}=\frac{4}{8}=\frac{1}{2}\)
=> \(\frac{AE}{AF}=\frac{AD}{AC}\)
b) \(\Delta\)AEF đồng dạng \(\Delta\)ADC (cmt)
=> \(\widehat{DFI}=\widehat{ECI}\). Lại có: \(\widehat{DIF}=\widehat{EIC}\left(gt\right)\)
=> \(\Delta\)DIF đồng dạng với \(\Delta\)EIC (g.g)
=> \(\frac{S_{IDF}}{S_{IEC}}=\left(\frac{DF}{EC}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)
a: Xét ΔABE và ΔADC có
AB/AD=AE/AC
góc BAE chung
DO đó:ΔABE đồng dạng với ΔADC
b: ta có: ΔABE đồng dạng với ΔADC
nên AB/AD=BE/DC
hay \(AB\cdot DC=AD\cdot BE\)
c: Ta có: AB/AD=BE/DC
nên 10/DC=8/10=4/5
=>DC=12,5(cm)
A B C x D E y
Xét tam giác \(ABE\) \(\&ADC\)
\(BAE=ADC\)(góc chung)
\(\frac{AB}{CD}=\frac{8}{10}=\frac{4}{5};\frac{AE}{AC}=\frac{12}{15}=\frac{4}{5}\)
\(\Rightarrow tamgiácABE~tamgiacADC\left(C.G.C\right)\)
b) Từ tam giác \(ABE\) \(~\)tam giác \(ADC\)\(\Rightarrow\frac{AB}{CD}=\frac{BE}{DC}\Rightarrow DC=\frac{AD\cdot BE}{AB}=\frac{10\cdot10}{8}=12,5\)
c) Từ tam giác \(ABE~\)tam giác \(ADC\left(cmt\right)\)
\(\Rightarrow\frac{S_{ABE}}{S_{ADC}}=\left(\frac{AB}{AD}\right)^2=\left(\frac{8}{10}\right)^2\left(\frac{4}{5}\right)^2=\frac{16}{25}\)
a: Xét ΔABE và ΔADC co
AB/AD=AE/AC
góc A chung
=>ΔABE đồng dạng vói ΔADC
b: ΔABE đồng dạng vói ΔADC
=>AB/AD=AE/AC=BE/DC
=>AB*DC=AD*BE
c: BE/DC=AB/AD
=>10/CD=8/12=2/3
=>CD=15cm
d: Xét ΔIBC và ΔIDE có
góc ICB=góc IED
góc BIC=góc DIE
=>ΔIBC đồng dạng với ΔIDE
=>IB/ID=IC/IE
=>IB*IE=ID*IC