Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BE⊥AM
CF⊥AM
Do đó;BE//CF
Xét ΔBME vuông tại E và ΔCMF vuông tại F có
BM=CM
\(\widehat{BME}=\widehat{CMF}\)
Do đó: ΔBME=ΔCMF
Suy ra:BE=CF
b: ta có: ΔBME=ΔCMF
nên ME=MF
c: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: EC//BF và EC=BF
Bài 1:
a)\(\frac{2}{3}.\frac{5}{2}-\frac{3}{4}.\frac{2}{3}=\frac{5}{3}-\frac{1}{2}=\frac{7}{6}\)
b)\(2.\left(\frac{-3}{2}\right)^2-\frac{7}{2}=\frac{2.9}{4}-\frac{7}{2}=\frac{9-7}{2}=\frac{2}{2}=1\)
c)\(-\frac{3}{4}.\frac{68}{13}-0,75.\frac{36}{13}=\frac{-3.4.17}{4.13}-\frac{3.9.4}{4.13}=\frac{-51-27}{13}=\frac{-78}{13}=-6\)
Bài 2:
a)|x-1,4|=1,6
\(\Rightarrow\left[\begin{array}{nghiempt}x-1,4=1,6\\x-1,4=-1,6\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-0,2\end{array}\right.\)
b) \(\frac{3}{4}-x=\frac{4}{5}\)
\(x=\frac{3}{4}-\frac{4}{5}=-\frac{1}{20}\)
c)(1-2x)3=-8
(1-2x)3=(-2)3
1-2x=-2
2x=3
x=\(\frac{3}{2}\)
Bài 3:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow\begin{cases}x=2k\\y=5k\\z=7k\end{cases}\)
A=\(\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
=> x=4/5 . 2= 8/5
y=4/5 . 5=4
z=4/5.7=28/5
30 người → 8 giờ
40 người→ ? giờ
lời giải thì bn tự đặt nha! Bây giờ bn lấy 30 nhân cho 8 rồi chia cho 40 nha bn. Chúc bn thành công
Bài 3:
Giải:
Ta có: \(\widehat{N_4}=\widehat{N_1}=120^o\) ( đối đỉnh )
Ta thấy \(\widehat{N_1}+\widehat{M_1}=180^o\) và 2 góc này ở vị trí trong cùng phía nên suy ra a // b
Vì a // b nên \(\widehat{M_1}=\widehat{N_3}=60^o\) ( đồng vị )
\(\widehat{N_3}=\widehat{N_2}=60^o\) ( đối đỉnh )
Vậy a // b
\(\widehat{N_1}=120^o,\widehat{N_2}=60^o,\widehat{N_3}=60^o\)
Bài 1:
Vì góc ECD = QPC ( nằm ở vị trí đồng vị )
=> AE // MQ ( đpcm )
Vì CBN và BNM là 2 góc so le trong
=> CBN // BNM ( đpcm )
Bài 2:
a, Vì MAC và NCA là 2 góc trong cùng phía bù nhau
=> MAC + NCA = 110* + 70* = 180*
=> AB // CD
b, Vì AB // CD ( câu a )
và BD _|_ DC
=> BD _|_ AB
Bài 1:
a) Ta có:
\(\widehat{C} = \widehat{P} = 50^O\) (hình vẽ)
mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\) AD // MQ (dhnb)
b) Vì AD // MQ (cmt)
\(\Rightarrow\)\(\widehat{CBN} = \widehat{BNM}\) ( so le trong)
Bài 1 (dưới)
a) Ta có:
\(\widehat{MAC} + \widehat{ACN} = 70^O + 110^O = 180^O\)
mà 2 góc này nằm ở vị trí trong cùng phía
\(\Rightarrow\) AB // CD
b) Ta có:
AB // CD (cmt)
\(BD \perp DN\) (hình vẽ)
\(\Rightarrow\)\(BD \perp AB\) (Định lí 3 trong bài từ vuông góc đến song song)
Giải:
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^o\) ( kề bù )
Mà \(\widehat{A_1}-\widehat{A_2}=60^o\)
\(\Rightarrow\widehat{A_1}=\left(180^o+60^o\right):2=120^o\)
\(\Rightarrow\widehat{A_2}=180^o-\widehat{A_1}=180^o-120^o=60^o\)
Vì a // b nên \(\widehat{B_1}=\widehat{A_1}=120^o\) ( so le trong )
\(\widehat{B_2}=\widehat{A_2}=60^o\) ( so le trong )
Vậy \(\widehat{B_1}=120^o,\widehat{B_2}=60^o\)
GT: a // b ; \(\widehat{A_1}\) - \(\widehat{A_2}\) = 60o
KL : \(\widehat{B_1}\) = ? ; \(\widehat{B_2}\) = ?
Ta có: \(\widehat{A_1}\) - \(\widehat{A_2}\) = 60o (gt) (1)
và \(\widehat{A_1}\) + \(\widehat{A_2}\) = 180o ( 2 góc kề bù) (2)
Từ (1) và (2)
\(\Rightarrow\) \(\widehat{A_1}\) = \(\frac{180^o+60^o}{2}\) = 120o
\(\widehat{A_2}\) = \(\frac{180^o-60^o}{2}\) = 60o
Vì a // b (gt) nên:
\(\Rightarrow\) \(\widehat{A_1}\) = \(\widehat{B_1}\) = 120o ( cặp góc so le trong)
\(\widehat{A_2}\) = \(\widehat{B_2}\) = 60o ( cặp góc so le trong)
Vậy \(\widehat{B_1}\) = 120o ; \(\widehat{B_2}\) = 60o
4. giải
thùng đó nặng số kilogam là:
0,65.12 + 2,3 = 10,1( kg)
D.E-
1. giải
số kg gạo nếp bác long cần là:
0,45 . 21 = 9,45( kg)
số kg đậu xanh bác long cần là:
0,17 . 21 = 3,57 ( kg)
số kg muối trộn hạt tiêu bác long cần là:
0,001 . 21 = 0,021 (kg)
mk giải bài 1 nhé ! mk ko biết dịch
tìm 8/9 của 72
72*8/9=64
tìm số người còn lại
72-64=8
tìm 25% của 8
8*25/100=2
ta có 8-2=6
Đ/s = 6 nhé
A B C D E H K M
a) Xét \(\Delta\)ADB và \(\Delta\)ADE có:
AD chung
\(\widehat{BAD}\) = \(\widehat{EAD}\) (AD là tia pg của \(\widehat{BAE}\))
AB = AE (gt)
=> \(\Delta\)ADB = \(\Delta\)ADE (c.g.c)
b) Vì \(\Delta\)ADB = \(\Delta\)ADE (câu a)
nên DB = DE (2 cạnh tương ứng); \(\widehat{ABD}\) = \(\widehat{AED}\) (2 góc tương ứng) hay \(\widehat{HBD}\) = \(\widehat{KED}\)
Xét \(\Delta\)HBD vuông tại H và \(\Delta\)KED vuông tại K có:
BD = ED (cm trên)
\(\widehat{HBD}\) = \(\widehat{KED}\) (cm trên)
=> \(\Delta\)HBD = \(\Delta\)KED (cạnh huyền - góc nhọn)
=> BH = EK (2 cạnh tương ứng)
c) Vì \(\Delta\)HBD = \(\Delta\)KED (câu b)
nên \(\widehat{BDH}\) = \(\widehat{EDK}\) (2 góc tương ứng) (1)
mà EM // DK nên \(\widehat{EDK}\) = DEM (2 góc so le trong) (2)
Từ (1) và (2) suy ra \(\widehat{DEM}\) = \(\widehat{BDH}\).
de