Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm, CH = 16cm.
Độ dài cạnh AB là: ............. cm.
- 15
Giá trị của biểu thức B2 = ..............
- 5
- 0
- 4
Giá trị của x để biểu thức đạt giá trị lớn nhất là: .............
- -3/2
Để hiểu sâu cần bắt nguồn từ cái này: \(\left(a-b\right)^2\ge0\) {gốc lớp 8}
đẳng thức khi a=b
\(\left(a-b\right)^2=a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)(1) đẳng thức khi a=b
tương tự có \(c^2+d^2\ge2cd\) (2)
đẳng thức khi c=d
hiển nhiên \(\left\{{}\begin{matrix}a^2+b^2\ge0\\c^2+d^2\ge0\end{matrix}\right.\) với mọi a,b,c,d thuộc R
Nhân (1) với (2) => điều cần chứng minh
Đẳng thức khi a=b và c=d
ta có: \(ac+bd\ge2\sqrt{acdb}\Rightarrow\left(ac+db\right)^2\ge4acdb\). nên ta có hệ quả của bất đẳng thức cô-si.
để xảy ra cả bất đẳng thức và hệ quả thì a = b = c = d.
Ta có \(D=sin^2a-cosa-1=-cos^2a-cosa=-\left(cos^2a+cosa+\frac{1}{4}\right)+\frac{1}{4}\le\frac{1}{4}\)
mình đang học onl nên là rep muộn chút
Đặt \(sina=x;cosa=y\)ta có : \(x^2+y^2=1\)
Khi đó : \(-E=x^2+y^2-x-y-1=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
\(< =>E\le\frac{3}{2}\)
sai thì thôi nhé
\(\sqrt{a}+\sqrt{b}=1\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2=1\)
\(\Rightarrow a+b+2\sqrt{ab}=1\)
\(\Rightarrow1-2\sqrt{ab}=a+b\)
Ta có
\(\left(4\sqrt{ab}+1\right)^2\ge0\)
\(\Rightarrow16ab-8\sqrt{ab}+1\ge0\)
\(\Rightarrow8\sqrt{ab}\left(1+2\sqrt{ab}\right)\le1\)
\(\Rightarrow8\sqrt{ab}\left(a+b\right)\le1\)
\(\Rightarrow64ab\left(a+b\right)\le1\)
\(\Rightarrow ab\left(a+b\right)\le\frac{1}{64}\)
(đpcm)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
KO
ĐĂNG
CÂU
HỎI
LINH
TINH
LÊN
DIỄN
ĐÀN