">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
21 tháng 11 2023

\(\left(a\right):A=\dfrac{x-5}{x-4}\left(x\ne4\right)\\ x^2-3x=0< =>x\left(x-3\right)=0\\ < =>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\left(TMDK\right)\)

Với \(x=0=>A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)

Với \(x=3=>A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=2\)

 

DT
21 tháng 11 2023

\(\left(b\right):\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\left(x\ne\left\{0;5\right\}\right)\)

\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\\ =\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-\left(2x^2-2x-50\right)}{2x\left(x-5\right)}\\ =\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\\ =\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}\\ =\dfrac{x-5}{2x}\)

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Những hình khối có dạng ở hình 11 được gọi là hình chóp tứ giác đều.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tứ giác ABCD có:

\(\begin{array}{l} \widehat A  + \widehat  B + \widehat C  + \widehat  D  = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)

3
11 tháng 12 2023

Đề này khó quá cô, đợi em suy nghĩ rồi e giải nha cô!

11 tháng 12 2023

Trường em còn chưa học đến một số kiến thức trong này.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).

Áp dụng tính chất đường phân giác của tam giác, ta có:

\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)

Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)

Vậy x = 7,2 (đvđd).

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.

Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:

\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)

Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).

Vậy x = 4 (đvđd).

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(\widehat {EBA} = \widehat {ACD}\) (giả thuyết)

\(\widehat {BAE} = \widehat {CAD} = 90^\circ \)

Do đó, \(\Delta ABE\backsim\Delta ACD\) (g.g)

Vì \(\Delta ABE\backsim\Delta ACD\) nên \(\frac{{AB}}{{AC}} = \frac{{EB}}{{CD}}\) (các cặp cạnh tương ứng)

Thay số, \(\frac{{20}}{{AC}} = \frac{{25}}{{15}} \Rightarrow AC = \frac{{20.15}}{{25}} = 12\)cm.

Áp dụng định lí Py – ta – go cho \(\Delta ABE\) vuông tại \(A\) ta có:

\(B{E^2} = A{E^2} + A{B^2} \Leftrightarrow A{E^2} = B{E^2} - A{B^2} = {25^2} - {20^2} = 225 \Rightarrow AE = \sqrt {225}  = 15\)cm.

Độ dài \(CE\) là:

15 – 12 = 3cm

Vậy \(CE = 3cm.\)