Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
a) \(\dfrac{-3}{100}>\dfrac{-50}{100}=-\dfrac{1}{2}\)
\(\dfrac{-2}{3}< \dfrac{-1,5}{3}=-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{-3}{100}>\dfrac{-2}{3}\)
b) \(\dfrac{-3}{5}=\dfrac{-9}{15}\)
\(\dfrac{-2}{3}=\dfrac{-10}{15}\)
Mà: - 9 > -10
\(\Rightarrow-\dfrac{9}{15}>\dfrac{-10}{15}\)
hay `-3/5>-2/3`
c) \(\dfrac{-5}{4}< \dfrac{-2}{4}=-\dfrac{1}{2}\)
\(-\dfrac{3}{8}>\dfrac{-4}{8}=-\dfrac{1}{2}\)
\(\Rightarrow-\dfrac{5}{4}< \dfrac{-3}{8}\)
d) \(-\dfrac{2}{3}=\dfrac{1}{3}-1\)
\(-\dfrac{3}{4}=\dfrac{1}{4}-1\)
Vì: `1/3>1/4`
`=>1/3-1>1/4-1`
Hay `-2/3>-3/4`
a: \(\dfrac{-3}{100}=\dfrac{-3\cdot3}{100\cdot3}=\dfrac{-9}{300};\dfrac{2}{-3}=\dfrac{-2}{3}=\dfrac{-2\cdot100}{3\cdot100}=\dfrac{-200}{300}\)
mà -9>-200
nên \(\dfrac{-3}{100}>\dfrac{-2}{3}\)
b: \(\dfrac{-3}{5}=\dfrac{-3\cdot3}{5\cdot3}=\dfrac{-9}{15};\dfrac{2}{-3}=\dfrac{-2}{3}=\dfrac{-2\cdot5}{3\cdot5}=\dfrac{-10}{15}\)
mà -9>-10
nên \(\dfrac{-3}{5}>\dfrac{2}{-3}\)
c: \(\dfrac{-5}{4}=\dfrac{-5\cdot2}{4\cdot2}=\dfrac{-10}{8};\dfrac{-3}{8}=\dfrac{-3}{8}\)
mà -10<-3
nên \(-\dfrac{5}{4}< -\dfrac{3}{8}\)
d: \(\dfrac{-2}{3}=\dfrac{-2\cdot4}{3\cdot4}=\dfrac{-8}{12};\dfrac{3}{-4}=\dfrac{-3}{4}=\dfrac{-3\cdot3}{4\cdot3}=\dfrac{-9}{12}\)
mà -8>-9
nên \(-\dfrac{2}{3}>\dfrac{3}{-4}\)
e: \(\dfrac{267}{-268}=\dfrac{-267}{268}>-1;-1=\dfrac{-1343}{1343}>\dfrac{-1347}{1343}\)
Do đó: \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
f: \(\dfrac{2022\cdot2023-1}{2022\cdot2023}=1-\dfrac{1}{2022\cdot2023}\)
\(\dfrac{2023\cdot2024-1}{2023\cdot2024}=1-\dfrac{1}{2023\cdot2024}\)
Ta có: 2022<2024
=>\(2022\cdot2023< 2023\cdot2024\)
=>\(\dfrac{1}{2022\cdot2023}>\dfrac{1}{2023\cdot2024}\)
=>\(-\dfrac{1}{2022\cdot2023}< -\dfrac{1}{2023\cdot2024}\)
=>\(\dfrac{-1}{2022\cdot2023}+1< \dfrac{-1}{2023\cdot2024}+1\)
=>\(\dfrac{2022\cdot2023-1}{2022\cdot2023}< \dfrac{2023\cdot2024-1}{2023\cdot2024}\)
g: \(\dfrac{2022\cdot2023}{2022\cdot2023+1}=1-\dfrac{1}{2022\cdot2023+1}\)
\(\dfrac{2023\cdot2024}{2023\cdot2024+1}=1-\dfrac{1}{2023\cdot2024+1}\)
Vì \(2022\cdot2023+1< 2023\cdot2024+1\)
nên \(\dfrac{1}{2022\cdot2023+1}>\dfrac{1}{2023\cdot2024+1}\)
=>\(\dfrac{-1}{2022\cdot2023+1}< \dfrac{-1}{2023\cdot2024+1}\)
=>\(\dfrac{-1}{2022\cdot2023+1}+1< \dfrac{-1}{2023\cdot2024}+1\)
=>\(\dfrac{2022\cdot2023}{2022\cdot2023+1}< \dfrac{2023\cdot2024}{2023\cdot2024+1}\)