Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) để lập số có 3 chữ số khác nhau thì:
- có 7 cách chọn chữ số hàng trăm
- Sau khi chọn chữ số hàng trăm, sẽ có 6 cách chọn chữ số hàng chục (chữ số hàng chục không trùng với chữ số hàng trăm đã chọn)
- Sau khi chọn chữ số hàng trăm và hàng chục, có 5 cách chọn chữ số hàng đơn vị (chữ số hàng đơn vị không được trùng với chữ số hàng chục và hàng đơn vị đã chọn)
Vậy có 7.6.5 = 210 cách chọn
B) Số các số {abc | a <= b <= c}
a = 7
b = 7, có 7 cách chọn c
b = 6, có 6 cách chọn c
...
b = 1, có 1 cách chọn c
=> Với a = 7, có 7 + 6 + 5 + ... + 1 cách chọn b và c
Tương tự:
Với a = 6, có 6 + 5 + .. + 1 cách chọn b và c
. . .
Với a = 1, có 1 cách chọn b và c
Vậy có tất số cách là:
(7 + 6 + ... + 1) + (6 + 5 + .. + 1) + ... (2 + 1) + 1
= 7.8/2 + 6.7/2 + ... + 2.3/2 + 1.2/2
= (7.8 + 6.7 + ... + 2.3 + 1.2)/2
= ...
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
a) (x4 – x2 + x - 1) = x4(1 - ) = +∞.
b) (-2x3 + 3x2 -5 ) = x3(-2 + ) = +∞.
c) = = +∞.
d) =
= = = -1.
a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).
Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.
Ta có lim f(xn) = lim = = .
Vậy = .
b) Hàm số f(x) = xác định trên R.
Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.
Ta có lim f(xn) = lim = lim = -5.
Vậy = -5.
a) Từ hệ thức suy ra d' = φ(d) = .
b) +) φ(d) = = +∞ .
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.
+) φ(d) = = -∞.
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.
+) φ(d) = = = f.
Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).
= + +
= + + (1)
= + +
= + + (2)
Nhân (2) với 2 rồi cộng với (1) ta được: = +
Vậy , , đồng phẳng.