K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

a) Hàm số f(x) =  xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và x→ 4 khi n → +∞.

Ta có lim f(xn) = lim  =  = .

Vậy   = .

b) Hàm số f(x) =  xác định trên R.

Giả sử (xn) là dãy số bất kì và x→ +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim  = -5.

Vậy   = -5.

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to  - 3} {x^2};\)            

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} =  - 3.\)

Ta có \(\lim x_n^2 = {\left( { - 3} \right)^2} = 9\)

Vậy \(\mathop {\lim }\limits_{x \to  - 3} {x^2} = 9.\)

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = 5.\)

Ta có \(\lim \frac{{{x_n}^2 - 25}}{{{x_n} - 5}} = \lim \frac{{\left( {{x_n} - 5} \right)\left( {{x_n} + 5} \right)}}{{{x_n} - 5}} = \lim \left( {{x_n} + 5} \right) = \lim {x_n} + 5 = 5 + 5 = 10\)

Vậy \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = 10.\)

4 tháng 7 2018

lim x → + ∞ x 3   +   1 x 2   +   1   =   + ∞

3 tháng 11 2019

lim x → 5     x + 3 x - 3 =   - 4

29 tháng 9 2018

TXĐ: D = R.

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

Lấy dãy (xn) bất kì thỏa mãn xn → +∞

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

26 tháng 12 2017

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

Lấy dãy (xn) bất kì; xn ∈ D; lim xn = 4.

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

4 tháng 4 2017

a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.

Ta có lim f(xn) = lim = = .

Vậy = .

b) Hàm số f(x) = xác định trên R.

Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim = -5.

Vậy = -5.



QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Đặt \({u_n} = 2 + {\left( {\frac{2}{3}} \right)^n} \Leftrightarrow {u_n} - 2 = {\left( {\frac{2}{3}} \right)^n}\).

Suy ra \(\lim \left( {{u_n} - 2} \right) = \lim {\left( {\frac{2}{3}} \right)^n} = 0\)

Theo định nghĩa, ta có \(\lim {u_n} = 2\). Vậy \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right) = 2\)

b) Đặt \({u_n} = \frac{{1 - 4n}}{n} = \frac{1}{n} - 4 \Leftrightarrow {u_n} - \left( { - 4} \right) = \frac{1}{n}\).

Suy ra \(\lim \left( {{u_n} - \left( { - 4} \right)} \right) = \lim \frac{1}{n} = 0\).

Theo định nghĩa, ta có \(\lim {u_n} =  - 4\). Vậy \(\lim \left( {\frac{{1 - 4n}}{n}} \right) =  - 4\)

26 tháng 8 2023

a) \(\lim\limits\dfrac{2n^2+3n}{n^2+1}=\lim\limits\dfrac{n^2\left(2+\dfrac{3n}{n^2}\right)}{n^2\left(1+\dfrac{1}{n^2}\right)}=\lim\limits\dfrac{2+\dfrac{3}{n}}{1+\dfrac{1}{n^2}}=2\).

b) \(\lim\limits\dfrac{\sqrt{4n^2+3}}{n}\\ =\lim\limits\dfrac{\sqrt{n^2\left(4+\dfrac{3}{n^2}\right)}}{n}\\ =\lim\limits\dfrac{\sqrt[n]{4+\dfrac{3}{n^2}}}{n}\\ =\lim\limits\sqrt{4+\dfrac{3}{n^2}}\\ =2.\)

30 tháng 12 2022

a) \(lim\dfrac{-2n+1}{n}=lim\dfrac{\dfrac{-2n}{n}+\dfrac{1}{n}}{\dfrac{n}{n}}=lim\dfrac{-2+\dfrac{1}{n}}{1}=\dfrac{lim\left(-2\right)+\dfrac{lim1}{n}}{lim1}=\dfrac{-2+0}{1}=-\dfrac{2}{1}=-2\)

b) \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{9-\left(x+8\right)}{\left(x-1\right)\left(3+\sqrt{x+8}\right)}=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(3+\sqrt{x+8}\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{3+\sqrt{x+8}}=\dfrac{1}{3+\sqrt{1+8}}=\dfrac{1}{3+3}=\dfrac{1}{9}\)