Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Nối AJ, JC, EI
Ta có: \(S_{EIJ}=S_{ECD}-S_{EDJ}-S_{EIC}-S_{IJC}-S_{CJD}=S_{ECD}-\frac{S_{EBD}}{2}-\frac{S_{EAC}}{2}-\frac{S_{AJC}}{2}-\frac{S_{BCD}}{2}\)
\(=S_{ECD}-\frac{S_{EAB}}{2}-\frac{S_{ABD}}{2}-\frac{S_{EAB}}{2}-\frac{S_{ABC}}{2}-\frac{S_{ADC}-S_{ADJ}-S_{DJC}}{2}-\frac{S_{BCD}}{2}\)
\(=\left(S_{ECD}-S_{EAB}\right)-\frac{S_{ABD}+S_{BCD}}{2}-\frac{S_{ABC}+S_{ADC}}{2}+\frac{S_{ADJ}+S_{DJC}}{2}\)
\(=S_{ABCD}-\frac{S_{ABCD}}{2}-\frac{S_{ABCD}}{2}+\frac{S_{ABD}+S_{BCD}}{4}=\frac{S_{ABCD}}{4}\)(ĐPCM)
P/s: Đây là một bài khó, nó chỉ là một bước trong bài này: Cho tứ giác ABCD, AB cắt CD tại E, AD cắt BC tại F. Gọi I, J, K lần lượt là trùng điểm của BD, AC, EF. Chứng minh: I, J, K thẳng hàng.(Bạn có thể tự giải thử =]] )
a)
A B C D H Từ A kẻ AH vuông góc với CD(H thuộc CD)
Xét tam giác AHD vuông tại H có:
góc ADH =30 độ
=>AH=\(\frac{AD}{2}\)=\(\frac{6,2}{2}\)=3,1 (trong tam giác vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
=>SABCD=AH.CD=3,1.6,2=19.22(cm2)