K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Bạn tự kẻ hình nhé.

a)

Kẻ BK vuông góc với BD (K thuộc DC).

Vì AC vuông góc với BD , BD vuông góc với BK nên AC // BK.

Xét tứ giác ABKC có: AB// CK (vì AB//CD) ; AC//BK.

=> Tứ giác ABKC là hình bình hành.   (1)

=> AB = CK.

=> CK = 5 (cm).

Ta có: DC + CK = DK

=>      DK = 10 + 5 = 15 (cm)

Từ (1) => AC = BK => BK = 12(cm)

Xét tam giác BDK vuông tại B có: 

           BD2 + BK2 = DK2

           BD2 + 122  = 152

           BD2 + 144 = 225

          BD2            = 81

 =>     BD = 9 (cm)     (vì BC>0)

Vậy BD = 9cm

b)

Gọi O là giao của BD và AC

Ta có:  SABCD = SABD + SBCD

            SABCD = 1/2  x OA x BD + 1/2 x OC x BD

            SABCD = 1/2 x BD x ( OA + OC)             

            SABCD  = 1/2 x  BD x AC

            SABCD = 1/2 x 9 x 12 = 54 (cm2)

Vậy SABCD = 54 cm2.

           

22 tháng 7 2017

Mik kb nha

24 tháng 3 2020

Bạn tự vẽ hình nha

Nối AJ, JC, EI

Ta có: \(S_{EIJ}=S_{ECD}-S_{EDJ}-S_{EIC}-S_{IJC}-S_{CJD}=S_{ECD}-\frac{S_{EBD}}{2}-\frac{S_{EAC}}{2}-\frac{S_{AJC}}{2}-\frac{S_{BCD}}{2}\)

                   \(=S_{ECD}-\frac{S_{EAB}}{2}-\frac{S_{ABD}}{2}-\frac{S_{EAB}}{2}-\frac{S_{ABC}}{2}-\frac{S_{ADC}-S_{ADJ}-S_{DJC}}{2}-\frac{S_{BCD}}{2}\)

                   \(=\left(S_{ECD}-S_{EAB}\right)-\frac{S_{ABD}+S_{BCD}}{2}-\frac{S_{ABC}+S_{ADC}}{2}+\frac{S_{ADJ}+S_{DJC}}{2}\)

                  \(=S_{ABCD}-\frac{S_{ABCD}}{2}-\frac{S_{ABCD}}{2}+\frac{S_{ABD}+S_{BCD}}{4}=\frac{S_{ABCD}}{4}\)(ĐPCM)

P/s: Đây là một bài khó, nó chỉ là một bước trong bài này: Cho tứ giác ABCD, AB cắt CD tại E, AD cắt BC tại F. Gọi I, J, K lần lượt là trùng điểm của BD, AC, EF. Chứng minh: I, J, K thẳng hàng.(Bạn có thể tự giải thử =]] )

25 tháng 3 2020

bạn à :D mình cũng đang hỏi cái câu bạn nói ấy bạn :D