K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF Bài 1: 1) Tính nhanh: d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 ) 2)Rút gọn và tính giá trị của biểu thức: b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0

Bài 2: 

a: \(x^3-\dfrac{1}{4}x=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

hay \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

b: \(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

=>x-5=0

hay x=5

c: \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

hay \(x\in\left\{0;-\sqrt{13};\sqrt{13}\right\}\)

d: \(x^2+2x-1=0\)

\(\Leftrightarrow x^2+2x+1=2\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

hay \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)

Đề 4: Bài 1.( 1,5 điểm)Thực hiện phép tính a)2x(x^2-3x+4) b) (x+2)(x-1) c) (4x^4-2x^3+6x^2):2x Bài 2. (2,5 điểm) Phân tích đa thức thành nhân tử: a) 2x^2 - 6x b) 2x^2 -18 c) x^3+3x^2+x+3 d)x^2-y^2+6y-9 Bài 3. (2,0 điểm)Thực hiện phép tính: a) 5x/x-1+-5/x-1 b) 1/x-3+2/x+3+9-x/x^2-9 c) 4x+8/4-x^29(x^2-2x) Bài 4.( 3,5 điểm)Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Lấy một điểm E nằm giữa hai điểm O và B....
Đọc tiếp

Đề 4:
Bài 1.( 1,5 điểm)Thực hiện phép tính
a)2x(x^2-3x+4) b) (x+2)(x-1) c) (4x^4-2x^3+6x^2):2x
Bài 2. (2,5 điểm) Phân tích đa thức thành nhân tử:
a) 2x^2 - 6x b) 2x^2 -18 c) x^3+3x^2+x+3 d)x^2-y^2+6y-9
Bài 3. (2,0 điểm)Thực hiện phép tính:
a) 5x/x-1+-5/x-1 b) 1/x-3+2/x+3+9-x/x^2-9 c) 4x+8/4-x^29(x^2-2x)
Bài 4.( 3,5 điểm)Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.
a) Chứng minh tứ giác OEFC là hình thang.
b) Tứ giác OEIC là hình gì? Vì sao?
c) Vẽ FH vuông góc với BC tại H,FK vuông góc với CD tại K. Chứng minh rằng I là trung điểm của đoạn thẳng HK.
d) Chứng minh ba điểm E, H, K thẳng hàng.
Bài5.( 0,5 điểm)Cho a, b, c, d thỏa mãn a+b=c+d;a^2+b^2=c^2+d^2
Chứng minh rằng a^2013+b^2013=C^2013+d^2013

2
1 tháng 1 2018

Bài 1:

a) 2x(x2 - 3x + 4)

= 2x3 - 6x2 + 8x

b) (x + 2)(x - 1)

= x2 - x + 2x - 2

= x2 + x - 2

c) (4x4 - 2x3 + 6x2) : 2x

= 2x3 - x2 + 3x

Bài 2:

a) 2x2 - 6x

= 2x(x - 3)

b) 2x2 - 18

= 2(x2 - 9)

= 2(x - 3)(x + 3)

c) x3 + 3x2 + x + 3

= x2(x + 3) + (x + 3)

= (x + 3)(x2 + 1)

1 tháng 1 2018

Bài 1 :

a) \(2x\left(x^2-3x+4\right)\)

= \(2x^3-6x^2+8x\)

b) \(\left(x+2\right)\left(x-1\right)\)

\(=x^2-x+2x-2\)

\(=x^2-x-2\)

Bài 2 :

a) \(2x^2-6x\)

\(=2x\left(x-3\right)\)

b) \(2x^2-18\)

\(=2\left(x^2-9\right)\)

\(=2\left(x-3\right)\left(x+3\right)\)

c) \(x^3+3x^2+x+3\)

\(=\left(x^3+3x^2\right)\left(x+3\right)\)

\(=x^2\left(x+3\right)\left(x+3\right)\)

\(=\left(x^2+1\right)\left(x+3\right)\)

Bài 3 :

a) \(\dfrac{5x}{x-1}+\dfrac{-5}{x-1}=\dfrac{5x+\left(-5\right)}{x-1}=\dfrac{5\left(x-1\right)}{x-1}=5\)

b) \(\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{x^2-9}\)

\(=\dfrac{1}{x-3}+\dfrac{2}{x+3}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}+\dfrac{9-x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x+3+2x-6+9-x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\)

a) Ta có: \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

b) Ta có: \(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)

c) Ta có: \(2x^2+7x+5\)

\(=2x^2+2x+5x+5\)

\(=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+5\right)\)

d) Ta có: \(2x^2+3x-5\)

\(=2x^2+5x-2x-5\)

\(=x\left(2x+5\right)-\left(2x+5\right)\)

\(=\left(2x+5\right)\left(x-1\right)\)

e) Ta có: \(x^3-3x^2+1-3x\)

\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

f) Ta có: \(x^2-4x-5\)

\(=x^2-4x+4-9\)

\(=\left(x-2\right)^2-3^2\)

\(=\left(x-2-3\right)\left(x-2+3\right)\)

\(=\left(x-5\right)\left(x+1\right)\)

g) Ta có: \(\left(a^2+1\right)^2-4a^2\)

\(=\left(a^2+1\right)^2-\left(2a\right)^2\)

\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)

h) Ta có: \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

k) Ta có: \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

m) Ta có: \(x^4+4x^2-5\)

\(=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

3 tháng 3 2020

a/\(P\left(x\right)=\left(6x^3+9x^2\right)-\left(16x^2+24x\right)+\left(8x+m\right)\)

\(\Leftrightarrow P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+\left(8x+m\right)⋮2x+3\)

\(\Rightarrow8x+m⋮2x+3\). Chỉ có thể \(8x+m=4\left(2x+3\right)\Rightarrow m=12\)

b/Áp dụng Betzout ta có

\(x=\frac{2}{3}\) là nghiệm của đa thức chia nên \(P\left(\frac{2}{3}\right)=r\) ( với r là đa thức bậc 0, vì đa thức chia bậc 1). Thế x=2/3 đc dư

-\(P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+4\left(2x+3\right)=\left(2x+3\right)\left(3x^2-8x+4\right)=\left(2x+3\right)\left(3x\left(x-2\right)-2\left(x-2\right)\right)=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)

5 tháng 3 2020

Ta nhận thấy quy luật \(P\left(1\right)=1,P\left(2\right)=4,P\left(4\right)=16,P\left(5\right)=25\Rightarrow P\left(x\right)=x^2\)

Vậy \(P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)+x^2\)

Thay x=6,7 rồi tính

Bài 5:

a) Ta có: \(x^4+4\)

\(=x^4+4\cdot x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x-x^3-1\right)\)

d) Ta có: \(x^8+x^4+1\)

\(=x^8+x^4+x^6-x^6+1\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^6-1\right)\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

g) Ta có: \(x^4+2x^2-24\)

\(=x^4+6x^2-4x^2-24\)

\(=x^2\left(x^2+6\right)-4\left(x^2+6\right)\)

\(=\left(x^2+6\right)\left(x^2-4\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(a^4+4b^4\)

\(=a^4+4a^2b^2+4b^4-4a^2b^2\)

\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

30 tháng 8 2021

ý e đâu

 

25 tháng 4 2019

a) Nếu 4x-1 \(\ge\) 0 \(\Leftrightarrow\) x\(\ge\) \(\frac{1}{4}\) (*) thì phương trình trở thành:
4x-1 = x+3 \(\Leftrightarrow\) 3x = 4 \(\Leftrightarrow\) x = \(\frac{4}{3}\) (t/m (*))
Nếu 4x - 1< 0 \(\Leftrightarrow\) x < \(\frac{1}{4}\) (**) thì phương trình trở thành:
-4x+1 = x+3 \(\Leftrightarrow\) 5x = -2 \(\Leftrightarrow\) x = \(-\frac{2}{5}\) (t/m (**))
Vậy tập nghiệm của pt đã cho là S=\(\left\{\frac{4}{3};-\frac{2}{5}\right\}\)
b) Nếu 4x-1 \(\ge\) 0 \(\Leftrightarrow\) x\(\ge\) \(\frac{1}{4}\) (*) thì phương trình trở thành:
4x-1 = 5+2x \(\Leftrightarrow\) 2x = 6 \(\Leftrightarrow\) x = 3 (t/m(*))
Nếu 4x - 1< 0 \(\Leftrightarrow\) x < \(\frac{1}{4}\) (**) thì phương trình trở thành:
-4x+1 = 5+2x \(\Leftrightarrow\) 6x = -4 \(\Leftrightarrow\) x = \(-\frac{2}{3}\)(t/m(**))
Vậy tập nghiệm của pt đã cho là S=\(\left\{3;-\frac{2}{3}\right\}\)

Câu 1: Phân tích các đa thức sau thành nhân tử: a. \(6x^2-6xy\) b. \(9+2xy-x^2-y^2\) Câu 2: a. Tìm x biết: 3x(x-1)+(1-x)=0 b. Với giá trị nào của x thì biểu thức \(x^3+4x\) có giá trị bằng 0. c. Tìm x để phân thức \(\frac{x^2-1}{x^3-1}\) có giá trị bằng 0. Câu 3: Thực hiền các phép tính sau: ...
Đọc tiếp

Câu 1: Phân tích các đa thức sau thành nhân tử: a. \(6x^2-6xy\) b. \(9+2xy-x^2-y^2\)

Câu 2:
a. Tìm x biết: 3x(x-1)+(1-x)=0
b. Với giá trị nào của x thì biểu thức \(x^3+4x\) có giá trị bằng 0.
c. Tìm x để phân thức \(\frac{x^2-1}{x^3-1}\) có giá trị bằng 0.

Câu 3: Thực hiền các phép tính sau: a. ( \(x^3+6x^2-13x-42\)) : ( x + 7 ) b. \(\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\) c. \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{1}{4x+16}\right):\frac{1}{4x}\)

Câu 4: Tìm giá trị lớn nhất của biểu thức :
A=\(\frac{3-\text{4x}}{x^2+1}\)

Câu 5: Cho tam giác ABC vuông cân tại A. M là một điểm bất kì trên cạnh BC. Đường thẳng qua M và vuông hóc với BC cắt các đường thẳng AB và AC lần lượt tại D và E. Qua M kẻ MH song song với AB ( H thuộc AC) và MK song song với AC ( K thuộc AC).
a. Chứng minh rằng :
AM = KH b. Gọi F là điểm đối xứng với M qua đường thẳng AC. Chứng minh tứ giác MEFC là hình vuông. c. Gọi N là hình chiếu của B trên CD. Chứng minh ba điểm B, E, N thẳng hàng. d. Chứng minh rằng khi M di chuyển trên cạnh BC thì trung điểm O của KH nằm trên đường thẳng cố định.

4
25 tháng 12 2019

Câu 1:

a) 6x2 - 6xy

= 6x(x - y)

b) 9 + 2xy - x2 - y2

= -[(x2 - 2xy + y2) - 9]

= -[(x - y)2 - 32 ]

= -(x - y -3)(x - y + 3)

Câu 2:

a) 3x(x - 1) + (1 - x) = 0

3x2 - 3x + 1 - x = 0

3x(x - 1) - (x - 1) = 0

(x - 1)(3x - 1) = 0

=> x - 1 = 0 hoặc 3x - 1 = 0

TH1: x - 1 = 0

x = 1

TH2: 3x - 1 = 0

3x = 1

x = \(\frac{1}{3}\)

Vậy x ϵ {1; \(\frac{1}{3}\)}

b) x3 + 4x = 0

x (x2 + 4) = 0

=> x = 0 hoặc x2 + 4 = 0

=> x = 0 hoặc x2 = -4(Vô lí)

Vậy x = 0

c) Ko làm đc

25 tháng 12 2019

kcj:3

15 tháng 8 2017

Bài 2 :

Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)

\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)

\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .

Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\Rightarrow\) ko thuộc vào biến

Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\) \(\Rightarrow\) ko thuộc vào biến

Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)

\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)

\(=221\) \(\Rightarrow\) không thuộc vào biến

16 tháng 8 2017

câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)

b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)

\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)

\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)

\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)

\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)

c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)

\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)

d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)

\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)

e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)

\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)

\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)