Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)
b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)
f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)
a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=x^2+2xy+y^2-x^2+y^2\)
\(=2y^2+2xy\)
\(=2y\left(x+y\right)\)
c) \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-x^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)
\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)
\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)
\(=\left(4x^2-1\right)\left(y^2-1\right)\)
a: Sửa đề: \(-x^3-12x^2-48x-64\)
\(=-\left(x+4\right)^3\)
\(=-\left(-6+4\right)^3=-\left(-2\right)^3=-\left(-8\right)=8\)
b: \(=8x^3-y^3-8x^3+27y^3=26y^3=26\cdot\left(-3\right)^3=-702\)
c: \(=-\left(4x^4-12x^2y+9y^2\right)\)
\(=-\left(2x^2-3y\right)^2\)
\(=-\left(2x^2-2x-11\right)^2\)
Bài 1 :
a) 3x2 . ( 5x2 - 7x + 4 ) = 15x4 - 21x3 + 12x2
b) xy2 . ( 2x2y - 5xy + y ) = 2x3y3 - 5x2y3 + xy3
c) ( 2x2 - 5x ) . ( 3x2 - 2x + 1 ) = 6x4 - 4x3 + 2x2 - 15x3 + 10x2 - 5x
= 6x4 - 19x3 + 12x2 - 5x
d) ( x - 3y ) . ( 2xy + y2 + x ) = 2x2y + xy2 + x2 - 6xy2 - 3y3 - 3xy
Bài 2 :
a) A = x2 + 9y2 - 6xy
=> A = x2 - 2 . x . 3y + ( 3y )2
=> A = ( x - 3y )2
Thay x = 19 và y = 13 vào biểu thức A ta có :
A = ( 19 - 3 . 13 )2
=> A = ( 19 - 39 )2
=> A = ( -20 )2
=> A = 400
b) B = x3 - 6x2y + 12xy2 - 8y3
=> B = ( x - 2y )3
Thay x = 12 và y = -4 vào biểu thức B ta có :
B = [ 12 - 2 . ( -4 ) ]3
=> B = ( 12 + 8 )3
=> B = 203
=> B = 8000
= -3y3 + 2x2y - 5xy2 + x2 - 3xy
Bài 3:
a) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\left(2x+y\right)^2:\left(2x+y\right)=2x+y\)
b) \(\left(27x^3+1\right):\left(3x+1\right)=\left(3x+1\right)\left(9x^2-9x+1\right):\left(3x+1\right)=9x^2-9x+1\)
c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\left(x-3y\right)^2:\left(3y-x\right)=\left(3y-x\right)^2:\left(3y-x\right)=3y-x\)
d) \(\left(8x^3-1\right):\left(4x^2+2x+1\right)=\left(2x-1\right)\left(4x^2+2x+1\right):\left(4x^2+2x+1\right)=2x-1\)
Bài 4: Tương tự bài 3 '-'
Bài 4 :
a ) ( 4x4 - 9 ) : ( 2x2 - 3 )
= ( 2x2 + 3 )( 2x2 - 3 ) : ( 2x2 - 3 )
= 2x2 + 3
b ) ( 8x3 - 27 ) : ( 4x2 + 6x + 9 )
= ( 2x - 3 )( 4x2 + 6x + 9 ) : ( 4x2 + 6x + 9 )
= 2x - 3
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)
\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)
\(=xy^2-\dfrac{x}{3}+1\)
b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)
\(=2\left(x+y\right)^2\)
c) \(\dfrac{8x^3+27y^3}{2x+3y}\)
\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)
\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)
\(=4x^2-6xy+9y^2\)
d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)
\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)
\(=16x^2y-4y^3+2\)
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)
\(\left(2x^2-y\right)\left(4x^2-5xy^2+3y^2\right)\)
\(=\left(2x^2-y\right)4x^2-\left(2x^2-y\right)5xy^2+\left(2x^2-y\right)3y^2\)
\(=8x^4-4x^2y-10x^3y^2+5xy^3+6x^2y^2-3y^3\)
\(\text{Câu 1: }\left(2x^2-y\right)\left(4x^2-5xy^2+3y^2\right)\\ \\=2x^2\left(4x^2-5xy^2+3y^2\right)-y\left(4x^2-5xy^2+3y^2\right)\\ \\=\\8x^4-10x^3y^2+6x^2y^2-4x^2y+5xy^3+3y^3\)
Câu 2:
\(\text{ a) }48x^2y^2-3y^2+6xy-3x^2\\ \\ =3\left(16x^2y^2-y^2+2xy-x^2\right)\\ \\ =3\left[16x^2y^2-\left(x^2-2xy+y^2\right)\right]\\ =3\left[\left(4xy\right)^2-\left(x-y\right)^2\right]\\ \\ =3\left(4xy-x+y\right)\left(4xy+x-y\right)\)
\(\text{b) }2x^3y-4x^2y^2+2xy^3\\ \\=2xy\left(x^2-2xy+y^2\right)\\ \\=2xy\left(x-y\right)^2\)
\(\text{c) }4x^2-6x^3y-2x^2+8x\\ \\=2x^2-6x^3y+8x\\ \\ =2x\left(x-3x^2y+4\right)\)
\(\text{d) }6xy+5x-5y-3x^2-3y^2\\ \\ =\left(5x-5y\right)-\left(3x^2-6xy+3y^2\right)\\ \\ =5\left(x-y\right)-3\left(x^2-2xy+y^2\right)\\ \\ =5\left(x-y\right)-3\left(x-y\right)^2\\ \\ =\left(x-y\right)\left[5-3\left(x-y\right)\right]\\ =\left(x-y\right)\left(5-3x+3y\right)\)