Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)
Có \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)
Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)
Vậy \(C=8\)
a.
\(\left|x-3,5\right|\ge0\)
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Vậy giá trị lớn nhất của biểu thức trên là 0,5 khi |x - 3,5| = 0 <=> x = 3,5
b.
\(\left|1,4-x\right|\ge0\)
\(-\left|1,4-x\right|\le0\)
\(-\left|1,4-x\right|-2\le-2\)
Vậy giá trị nhỏ nhất của biểu thức trên là -2 khi |1,4 - x| = 0 <=> x = 1,4
Chúc bạn học tốt ^^
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2.S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2.S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow S=1-\frac{1}{2^{100}}\)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^x=16:2=8\)
\(\Rightarrow x=3\)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^x=16:2=8\)
\(\Rightarrow x=3\)
a) Tích của hai lũy thừa : x4 . x 12
b) Lũy thừa của x4 : (x4)4
c) Thương của hai lũy thừa x22 : x6
Vì \(\left|x-\frac{2}{3}\right|\ge0\); \(\left|2y+3\right|\ge0\); \(\left(z-2\right)^2\ge0\)
=> \(\left|x-\frac{2}{3}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)
Mà theo đề bài: \(\left|x-\frac{2}{3}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
=> \(\begin{cases}\left|x-\frac{2}{3}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{3}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{3}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{3}\\y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy \(x=\frac{2}{3};y=-\frac{3}{2};z=2\)
= 0 nha mn mk ghi thiếu