Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
1) Vì vai trò của x;y;z;t như nhau nên giả sử x≤y≤z≤tx≤y≤z≤t
Suy ra x+y+z+t≤4tx+y+z+t≤4t
↔xyzt≤4t↔xyz≤4↔xyzt≤4t↔xyz≤4
Do x;y;z;t nguyên dương nên 0<xyz≤4→xyz=1;2;3;40<xyz≤4→xyz=1;2;3;4
Xét 4 trường hợp sau:
• TH1TH1 : xyz=1xyz=1
→x=y=z=1→x=y=z=1
Thay vào (1) có : 3+t=t3+t=t (vô lí)
TH1TH1 không xảy ra: loại
• TH2:xyz=2TH2:xyz=2
Do x≤y≤z→x=y=1;z=2x≤y≤z→x=y=1;z=2
Thay vào (1) có : 4+t=2t→t=44+t=2t→t=4 (thỏa mãn)
(x;y;z;t) = (1;1;2;4)
• TH3:xyz=3TH3:xyz=3
→x=y=1;z=3→x=y=1;z=3
Thay vào (1) có : 5+t=3t→2t=55+t=3t→2t=5 (vô lí vì 5 k chia hết cho 2)
TH3TH3 k xảy ra : loại
• TH4TH4 : xyz = 4
+) x = 1; y = z = 2
→5+t=4t→5=3t→→5+t=4t→5=3t→ t không là số nguyên
+) x=y=1;z=4x=y=1;z=4
Thay vào (1) tìm được t = 2 (không thỏa mãn do z≤tz≤t(gt) mà z = 4 > 2 = t)
TH4TH4 không xảy ra: loại
Vậy (x;y;z;t) = (1;1;2;4) và các hoán vị
2)xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
5)
Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man
với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...
với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm
với n>2
nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n
suy ra xn+yn<zn (1)
nếu x2+y2<z2 suy ra
(x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n
mà (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra xn+yn<zn (2)
còn trường hợp x2+y2>z2 mình chưa nghĩ ra nha
bạn thông cảm nhé
@minhnguvn
TH1 : z =2
=> VL
TH2 z le => z^4 dong du 1 mod 4
x^2 dong du 0 hoac 1 mod 4
y^3 dong du 0,1,3 mod 4
=> ko the co so nguyen to x,y,z