Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc: v(t) = S’(t) = (t3 – 3t2 – 9t)' = 3t2 – 6t – 9.
Gia tốc : a(t) = v’(t) = (3t2 – 6t – 9)’ = 6t – 6.
a) Khi t = 2s, v(2) = 3.22 – 6.2 – 9 = -9 (m/s).
b) Khi t = 3s, a(3) = 6.3 – 6 = 12 (m/s2).
c) v(t) = 0 ⇔ 3t2 – 6t – 9 = 0 ⇔ t = 3 (vì t > 0).
Khi đó a(3) = 12 m/s2.
d) a(t) = 0 ⇔ 6t – 6 = 0 ⇔ t = 1.
Khi đó v(1) = 3.12 – 6.1 – 9 = -12 (m/s).
S' = 3t2 - 8t - 2. Gia tốc Y(t) = S'' = 6t - 8, Y(3) = 18 - 8 = 10(m/s2)
Chọn đáp án A.
a, Phương trình vận tốc là: v(t) = \(3t^2-6t+8\)
Phương trình gia tốc là: a(t) = \(6t-6\)
Thay t = 3 vào phương trình, ta được:
s = \(3^3-3\cdot3^3+8\cdot3+1=25\left(m\right)\)
\(v=3\cdot3^2-6\cdot3+8=17\left(m/s\right)\\ s=6\cdot3-6=12\left(m/s^2\right)\)
b, Theo đề bài, ta có:
\(t^3-3t^2+8t+1=7\\ \Leftrightarrow t^3-3t^2+8t-6=0\\ \Leftrightarrow\left(t-1\right)\left(t^2-2t+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=1\\t^2-2t+6=0\left(vô.nghiệm\right)\end{matrix}\right.\)
Khi t = 1(s), chất điểm đi được 7m
\(v=3\cdot1^2-6\cdot1+8=5\left(m/s\right)\\ a=6\cdot1-6=0\left(m/s^2\right)\)
Phương trình gia tốc là: \(a\left(t\right)=v'\left(t\right)=2t+2\)
a, Tại thời điểm t = 3(s), gia tốc tức thời là: \(a\left(3\right)=2\cdot3+2=8\left(m/s^2\right)\)
b, Vận tốc của chất điểm bằng 8
\(\Rightarrow t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
Vậy khi t = 8s thì chất điểm đạt vận tốc 8m/s.
Ta có s = 1 2 g t 2 => s ' ( t ) = g . t = v ( t )
Khi đó v ( 5 ) = 9 , 8.5 = 49 m/s
Chọn đáp án A
Gọi k là hệ số góc của tiếp tuyến .
Phương trình tiếp tuyến vuông góc với đường thẳng y = 1 7 x − 4 nên:
k . 1 7 = − 1 ⇒ k = − 7
Với k=-7 ta có f ' x = 3 x 2 − 10 x = − 7 ⇔ 3 x 2 − 10 x + 7 = 0
⇔ x = 1 x = 7 3
Ứng với 2 giá trị của x ta viết được 2 phương trình tiếp tuyến thỏa mãn.
Chọn đáp án B
Chọn B
Ta tính được s'(t) = t, do đó vận tốc là v(5) = s'(5) = 5 (m/s)
Trả lời:
a) Vận tốc của chuyển động khi t = 2 (s).
Ta có:
v=dsdt=S′=3t2−6t−9v=dsdt=S′=3t2−6t−9
Khi t = 2(s) ⇒ 3.22 – 6.22 – 9 = -9 m/s.
b) Gia tốc của chuyển động khi t = 3(s). Ta có:
a=dvdt=v′=6t−6a=dvdt=v′=6t−6
Ở t = 3(s) ⇒ a = 6.3 – 6 = 12 m/s2
c) Ta có: v = 3t2 – 6t – 9
Tại thời điểm vận tốc triệt tiêu:
v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)
Gia tốc: a = 6t – 6.
Khi t = 3s ⇒ a = 6.3 – 6 = 12 m/s2
d) Ta đã có a = 6t – 6.
Khi a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)
Lại có: v = 3t2 – 6t – 9
Khi t = 1(s) ⇒ v = 3.12 – 6.1 – 9 = -12 m/s
a) Vận tốc trung bình trong khoảng thời gian từ t đến t + Δt là:
b) Vận tốc tức thời tại thời điểm t = 5s chính là vận tốc trung bình trong khoảng thời gian (t; t + Δt) khi Δt → 0 là :
Chọn B.