K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2023

 \(F_1F_2=2c=2\sqrt{5}\)

\(\Rightarrow c=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\)

\(\left(E\right)\) qua  \(\left(5;0\right)\Rightarrow a=5\)

Ta có : \(b=\sqrt{a^2-c^2}\)

\(\Rightarrow b^2=a^2-c^2\)

\(\Rightarrow b^2=5^2-\sqrt{5}^2\)

\(\Rightarrow b^2=25-5=20\)

Vậy \(PTCT\left(E\right):\dfrac{x^2}{25}+\dfrac{y^2}{20}=1\)

 

30 tháng 4 2023

cảm ơn ạ

1: (E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

3^2/b^2=1

=>b^2=9

=>b=3

F2(5;0)

=>c=5

=>\(\sqrt{a^2-9}=5\)

=>a^2-9=25

=>a^2=34

=>\(a=\sqrt{34}\)

=>x^2/34+y^2/9=1

2: Thay x=7 và y=0 vào (E), ta được:

7^2/a^2+0^2/b^2=0

=>a^2=49

=>a=7

Thay x=0 và y=3 vào (E), ta được:

0^2/a^2+3^2/b^2=1

=>b^2=9

=>b=3

=>(E): x^2/49+y^2/9=1

3: Thay x=0 và y=1 vào (E), ta được:

1/y^2=1

=>y=1

=>(E): x^2/a^2+y^2/1=1

Thay x=1 và y=căn 3/2 vào (E), ta được:

1^2/a^2+3/4=1

=>1/a^2=1/4

=>a^2=4

=>a=2

=>(E); x^2/4+y^2/1=1

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Phương trình chính tắc của elip có dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Elip đi qua \(A\left( {5;0} \right)\) nên ta có \(\frac{{{5^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Leftrightarrow {a^2} = 25\)

Mặt khác elip có một tiêu điểm \({F_2} = \left( {3;0} \right)\) nên ta có \(c = 3\), suy ra \({b^2} = {a^2} - {c^2} = 25 - {3^2} = 16\)

Vậy phương trình của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).

F2(5;0)

=>c=5

(E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

9/b^2=1

=>b=3

c^2=a^2-b^2

=>a^2=5^2+3^2=34

=>(E): x^2/34+y^2/9=1

15 tháng 7 2019

Gọi phương trình chính tắc của elip là:  x 2 a 2 + y 2 b 2 = 1

Vì elip đi qua điểm  A 2 ; 3 do đó thay tọa độ điểm A vào ta được

4 a 2 + 3 b 2 = 1 (1)

Theo đề bài tỉ số của độ dài trục lớn và tiêu cực là

2 a 2 c = a c = 2 3 ⇔ a = 2 c 3 ⇔ 3 a 2 = 4 c 2

Mà  c 2 = a 2 - b 2 ta có  3 a 2 = 4 a 2 - b 2 ⇔ a 2 - 4 b 2 = 0 (2)

9 tháng 2 2018

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Từ giả thiết ta có \(a = 5,b = 4\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

b) Ta có: \(a = 5,c = 3 \Rightarrow b = \sqrt {{a^2} - {c^2}}  = \sqrt {{5^2} - {3^2}}  = 4\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

c) Từ giả thiết ta có: \(2a = 16,2b = 12 \Rightarrow a = 8,b = 6\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{36}} = 1\)

d) Từ giả thiết ta có: \(2a = 20,2c = 12 \Rightarrow a = 10,c = 6 \Rightarrow b = \sqrt {{a^2} - {c^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8\)

Suy ra phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có: \(c = \sqrt {{{100}^2} - {{64}^2}}  = 6\). Do đó (E) có hai tiêu điểm là \({F_1}\left( { - 6;0} \right),{F_2}\left( {6;0} \right)\) và có tiêu cự bằng 2c = 12.

20 tháng 5 2017

a) \(\left(E\right):\dfrac{x^2}{100}+\dfrac{y^2}{36}=1\)

b) \(\left(E\right):\dfrac{x^2}{169}+\dfrac{y^2}{25}=1\)

NV
21 tháng 3 2023

Tiêu cự là \(2c\), độ dài trục lớn là \(2a\) \(\Rightarrow\dfrac{2c}{2a}=\dfrac{1}{2}\Rightarrow a=2c\) (1)

Phương trình elip có dạng:

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2-c^2}=1\) (2)

Thay (1) vào (2):

\(\Leftrightarrow\dfrac{x^2}{4c^2}+\dfrac{y^2}{3c^2}=1\) (3)

Do elip qua A, thay tọa độ A vào (3):

\(\Rightarrow\dfrac{6^2}{4c^2}+\dfrac{0}{3c^2}=1\Rightarrow c=3\) \(\Rightarrow a=2c=6\)

\(\Rightarrow b^2=a^2-c^2=27\)

Vậy pt elip là: \(\dfrac{x^2}{36}+\dfrac{y^2}{27}=1\)