K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10

Nếu đề là \(\left(\dfrac{a+b}{b+c}+\dfrac{b-c}{b-a}\right).\dfrac{a-2b+3c}{a+c}\) thì có đúng đâu em

Em cứ thay thử \(a=1;b=2,c=\sqrt{3}\) thỏa mãn \(a^2+2b^2=3c^2\) vào biểu thức là thấy

Kết quả ko phải 1 số nguyên dương

9 tháng 10

nhưng c có thể bằng \(-\sqrt{3}\) mà

20 tháng 6 2019

Vì x, y, z tỉ lệ với các số a, b, c nên  suy ra x = ka, y = kb, z = kc

Thay x = ka, y = kb, z = kc vào ( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 ) ta được

[ ( k a ) 2   +   2 ( k b ) 2   +   3 ( k c ) 2 ] ( a 2   +   2 b 2   +   3 c 2 )     =   ( k 2 a 2   +   2 k 2 b 2   +   3 k 2 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) 2     =   [ k ( a 2   +   2 b 2   +   3 c 2 ) ] 2       =   ( k a 2   +   2 k b 2   +   3 k c 2 ) 2       =   ( k a . a   +   2 k b . b   +   3 k c . c ) 2 =   ( x a   +   2 y b   +   3 z c ) 2  

do x = ka,y = kb, z = kc

Vậy

( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 )   =   ( a x   +   2 b y   +   3 c z ) 2

Đáp án cần chọn là: D

Đặt x=a + b - 2c
       y=b+c-2a
       z=c+a-2b
=>x+y+z=(a + b - 2c)+(b+c-2a)+(c+a-2b)
=>x+y+z=0
=>x+y= - z                         (1)
=>(x+y)^3=(-z)^3
=>x^3+y^3+3xy(x+y)=(-z)^3
=>x^3+y^3+z^3 +3xy(-z)=0        {vì x+y=-z [theo (1)]}
=>x^3+y^3+z^3 -3xyz=0
=>x^3+y^3+z^3 =3xyz
Vậy (a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3=3(a + b - 2c) (b + c - 2a)(c + a - 2b)

21 tháng 10 2019

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

30 tháng 9 2019

cm ad=bc là đc

NV
8 tháng 5 2023

Trước hết, với \(a+b+c=1\) ta có:

\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)

Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Từ đó:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 5 2023

em cảm ơn thầy nhiều ạ !

 

 

4 tháng 10 2016

a) \(9\left(a+b\right)^2-4\left(a-2b\right)^2\)

\(=\left[3\left(a+b\right)+2\left(a-2b\right)\right]\left[3\left(a+b\right)-2\left(a-2b\right)\right]\)

\(=\left(3a+3b+2a-4b\right)\left(3a+3b-2a+4b\right)\)

\(=\left(5a-b\right)\left(a+7b\right)\)

b) \(\left(2a-b\right)^2-4\left(a-b\right)^2\)

\(=\left[\left(2a-b\right)-2\left(a-b\right)\right]\left[\left(2a-b\right)+2\left(a-b\right)\right]\)

\(=\left(2a-b-2a+2b\right)\left(2a-b+2a-2b\right)\)

\(=b\left(4a-3b\right)\)

c) \(125-\left(x+2\right)^3\)

\(=\left(5-x-2\right)\left[25+5\left(x+2\right)+\left(x+2\right)^2\right]\)

\(=\left(3-x\right)\left(25+5x+10+x^2+4x+4\right)\)

\(=\left(3-x\right)\left(x^2+9x+39\right)\)

d) \(\left(x+3\right)^3-8=\left(x+3-2\right)\left[\left(x+3\right)^2+2\left(x+3\right)+4\right]\)

\(=\left(x+1\right)\left(x^2+8x+19\right)\)

e) \(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2=\left(x^6-y^2\right)\left(x^6+y^2\right)\)  9 khai triển tiếp hđt 6,7)

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

NV
27 tháng 4 2019

\(P=\sum\frac{ab}{a+3b+2c}=\sum\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{a+b+c}{6}\)

Dấu "=" có xảy ra tại \(a=b=c\)