K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Điều kiện: x < 2

PT ⇔ 4 − 2 − x = 2 2 − x ⇔ 2 2 − x = 2 + x

⇔ x + 2 ≥ 0 x + 2 2 = 4 2 − x ⇔ x ≥ − 2 x 2 + 8 x − 4 = 0

⇔ x ≥ − 2 x = − 4 − 2 5 x = − 4 + 2 5 ⇔ x = − 4 + 2 5 ⇒ S = − 4 + 2 5

Đáp án cần chọn là: A

NV
19 tháng 3 2022

Pt đã cho có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(2m+9\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\-m^2-5m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\-5< m< 0\end{matrix}\right.\)

\(\Rightarrow m=\left\{-4;-3;-2\right\}\) có 3 giá trị nguyên

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là A.∅      B.R       C.R\{2}            D.[3;+∞)Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)A.2     B.3         C.4         D.5Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)     ...
Đọc tiếp

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là 

A.∅      B.R       C.R\{2}            D.[3;+∞)

Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)

A.2     B.3         C.4         D.5

Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:

A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)      C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)

 D. Hệ vô nghiệm

Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành 

A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\)       B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\)      C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\)        D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)

Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)

A.0       B.1          C.2              D.Vô nghiệm

Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)

A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\))          B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\))      C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))       D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))   

Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?

A.(1;1;1)     B.(2;2;1)        C.(-1;1;2)      D.(1;2;1)

Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó 

A.Góc C>90o      B. Góc C<90o      C. Góc C=90o    D. Không thể kết luận được gì về góc 

C

Câu 9 : Tập nghiệm bất phương trinh x2<0

A.R    B.∅       C.(-1;0)       D.(-1;+∞)

Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0

A.R       B.∅      C.(-1;0)        D.(-1;+∞)

 

1
2 tháng 2 2021

Chọn D.

 

 

Chọn A.

 

 

Chọn D.

 

 

Chọn A.

 

 

Chọn A.

mình chỉ biết làm đến đây thôi @@

Câu 1: D

 

4 tháng 12 2021

Bạn ơi câu 2 đâu

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

10 tháng 12 2020

TXĐ: D=\(\left[-2;2\right]\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=a\ge0\Rightarrow a^2=4+2\sqrt{-x^2+4}\) 

Khi đó: pt trở thành: \(a+a^2+2m-1=0\) (*)

để pt đã cho có nghiệm thì pt(*) có nghiệm

khi đó \(\Delta=1^2-4\left(2m-1\right)=-8m+2\ge0\Rightarrow m\le\dfrac{1}{4}\)

???

4 tháng 1 2020

Đặt t = x + 2 + 2 − x

Điều kiện  t = x + 2 + 2 − x ≥ x + 2 + 2 − x = 2 ⇒ t ≥ 2

Lại có  x + 2 + 2 − x ≤ 1 2 + 1 2 . x + 2 + 2 − x = 2 2 ⇒ t ≤ 2 2

Suy ra 2 ≤ t ≤ 2 2

Ta có: t 2 = 4 + 2 4 − x 2 ⇒ 2 4 − x 2 = t 2 − 4

Phương trình trở thành: t + t 2 − 4 − 2 m + 3 = 0 ⇔ t 2 + t − 2 m − 1 = 0

⇔ t 2 + t − 1 = 2 m *

Xét hàm số f ( x ) = t 2 + t − 1 (parabol có hoành độ đỉnh x = − 1 2 ∉ 2 ; 2 2 ) trên 2 ; 2 2 , có bảng biến thiên

 

Phương trình () có nghiệm thỏa  2 ≤ t ≤ 2 2  khi  5 ≤ 2 m ≤ 7 + 2 2

⇒ 5 2 ≤ m ≤ 7 + 2 2 2

5 2 ≤ m ≤ 7 + 2 2 2 → 2 , 5 ≤ m ≤ 4 , 91

Vậy có 2 giá trị m nguyên dương là m = 3 ,   m = 4

Đáp án cần chọn là: D

NV
21 tháng 11 2021

a.

Phương trình có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m-1\right)\left(m-4\right)< 0\)

\(\Rightarrow1< m< 4\)

b. 

Phương trình có 2 nghiệm dương khi (ko có chữ phân biệt?):

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}>0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\4< m\le5\end{matrix}\right.\)

c.

Phương trình có 2 nghiệm âm khi:

\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}< 0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\1< m< 3\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

NV
24 tháng 12 2020

ĐKXĐ: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\Rightarrow\left\{{}\begin{matrix}2\le t\le2\sqrt{2}\\2\sqrt{-x^2+4}=t^2-4\end{matrix}\right.\)

Pt trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow t^2+t-1=-2m\)

Xét hàm \(f\left(t\right)=t^2+t-1\) trên \(\left[2;2\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[2;2\sqrt{2}\right]\)

\(f\left(2\right)=5\) ; \(f\left(2\sqrt{2}\right)=7+2\sqrt{2}\)

\(\Rightarrow5\le-2m\le7+2\sqrt[]{2}\)

\(\Rightarrow-\dfrac{7+2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Có đúng 1 giá trị nguyên của m thỏa mãn là \(m=-4\)

25 tháng 12 2020

chỗ 2<= t<= 2can2 làm sao ra được j mài

9 tháng 7 2021

 

Điều kiện xác định x∈Rx∈R.

Đặt t=√x2+1 (t≥1t≥1)

Phương trình trở thành t2−1−4t−m+1=0

⇔t2−4t=m

⇔t2−4t=m. (1)

Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.

Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:

Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3

Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.

9 tháng 7 2021

mik có ghi thừa 1 dòng ⇔t2-4t=m bạn nhé