K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

tận cùng là 4

4 tháng 4 2017

"toi" don't know

17 tháng 3 2021

A=4x111...11 (2n chữ số 1) mà \(111...11=\frac{10^{2n}-1}{9}\Rightarrow A=4.\frac{10^{2n}-1}{9}\) 

Tương tự \(B=8.\frac{10^n-1}{9}\)

\(A+2B=4.\frac{10^{2n}-1}{9}+16.\frac{10^n-1}{9}=\frac{4.10^{2n}-4+16.10^n-16}{9}\)

Đề bài sai thì phải

7 tháng 10 2015

67+12-14=64

91-11-14=66

89-11-11=67

99-11-80=88

100-99-1=0

99-81-17

77-60-13=4

88-12-15=61

111-111=0

999-888=111

777-444=333

555-111=444

888-111=777

999-666=333

777-000=777

111-000=111

 

 

7 tháng 10 2015

ê cả tay

67+12-14= 65  

   91-11-14= 66  

  89-11-11=67

 99-11-80= 8 

   100-99-1= 0  

  99-81-11= 7   

     77-60-13= 4  

       88-12-15=61

111-111= 0            999-888=  111         777-444= 333                 555-111= 444             

 888-111= 777           999-666= 333            777-000=  777          111-000= 111

lần sau ra vưa vưa a bạn

11 tháng 6 2021

`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`

`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`

`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`

`=2`

11 tháng 6 2021

sai dấu bước 2 rồi kìa bạn ơi

16 tháng 8 2019

\(\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\left(2abc+\Sigma a^2\left(b+c\right)\right)=\Sigma\frac{a\left(b+c\right)^2+\left(a^2+bc\right)\left(b+c\right)}{\left(b+c\right)^2}=\Sigma a+\Sigma\frac{a^2+bc}{b+c}\)

Mặt khác ta có :

\(\left(\Sigma\frac{a^2+bc}{b+c}\right)\left(\Sigma a\right)=\Sigma\frac{a^3+abc}{b+c}+\Sigma\left(a^2+bc\right)\)   ( nhân vào xong tách )

\(=\Sigma\frac{a^3+abc}{b+c}-\Sigma a^2+\Sigma\left(2a^2+bc\right)=\Sigma\frac{a\left(a-b\right)\left(a-c\right)}{b+c}+\Sigma\left(2a^2+bc\right)\)  ( * )

Theo BĐT Vornicu Schur chứng minh được  ( * ) không âm.

do đó : \(\Sigma\frac{a^2+bc}{b+c}\ge\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\)

Theo đề bài , cần chứng minh : \(\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Kết hợp với dòng đầu tiên t cần c/m :

\(\left(\Sigma ab\right)\left(\Sigma a+\frac{\Sigma\left(2a^2+bc\right)}{\Sigma a}\right)\ge\frac{9}{4}\left(2abc+\Sigma a^2\left(b+c\right)\right)\)

Quy đồng lên, ta được :

\(\Sigma a^3\left(b+c\right)\ge2\Sigma\left(ab\right)^2\Leftrightarrow\Sigma ab\left(a-b\right)^2\ge0\)

\(\Rightarrow\)đpcm

16 tháng 8 2019

Sử dụng dồn biến chứ k phải vậy

1 tháng 8 2015

>                                                

2 tháng 9 2019

A B C E D M N I K

Trong tam giác ABC ta có:

E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của ∆ ABC

⇒ED//BC⇒ED//BC và ED=\(\frac{1}{2}BC\) (tính chất đường trung bình của tam giác)

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung bình hình thang BCDE ⇒ MN // DE

\(MN=\frac{DE+BC}{2}=\frac{\frac{BC}{2}+BC}{2}=\frac{3BC}{4}\)(tính chất đường trung bình hình thang)

Trong tam giác BED ta có:

M là trung điểm của BE

MI // DE

Suy ra: MI là đường trung bình của ∆ BED

\(\Rightarrow MI=\frac{1}{2}DE=\frac{1}{4}BC\)(tính chất đường trung bình tam giác)

Trong tam giác CED ta có:

N là trung điểm của CD

NK // DE

Suy ra: NK là đường trung bình của ∆ BED

\(\Rightarrow NK=\frac{1}{2}DE=\frac{1}{4}BC\)(tính chất đường trung bình tam giác)

\(IK=MN-\left(MI+NK\right)\)

\(=\frac{3}{4}BC-\left(\frac{1}{4}BC+\frac{1}{4}BC\right)=\frac{1}{4}BC\)

\(\Rightarrow MI=IK=KN=\frac{1}{4}BC\)

Chúc bạn học tốt !!!

3 tháng 9 2019

Cảm ơn hoang viet nhat nhé, nhưng lời giải này không được cô giáo mình chấp nhận vì cô bảo chưa học đến đường trung bình của hình thang nên nếu mình làm thế trên bảng thì các bạn sẽ không hiểu. 

25 tháng 5 2022

a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\\\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\end{matrix}\right.\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Rightarrow x=2.10=20\\\dfrac{y}{15}=2\Rightarrow y=2.15=30\\\dfrac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)