Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy F trên tia đối của AB sao cho AF=CK
=>AM+CK=AM=MF 3
Xét tam giác DAF và tam giác NCN có
AF=CK(gt)
DAF=DCK(gt DK là pg)
AD=CD(gt)
=> tam giác DAF= tam giác DCK(c-g-c)
=>AFD=CKD( 2 góc t/ứng)
Mà CKD=ADK(slt)=>AFD=ADK 1
Mặt khác ADK= ADM+MDK, MDK=KDC(gt)
=>ADK=ADM+KDC=ADM+ADF 2
Từ 1 và 2=>AFD=ADM+ADF=MDF=>tam giác FMD cân tại M=>FM=MD 4
Từ 3 và 4=>AM+CK=DM
-dpcm-
Câu a) Nhầm đề rồi nhé
a) * Áp dụng đlí pytago: \(AB^2+BC^2=AC^2\) . Do ABCD là hình vuông => \(AB=BC\)
=> \(2BC^2=AC^2\)
=> \(BC\sqrt{2}=AC\)(1)
Xét tam giác ADC vuông tại D có DF là đường trung tuyến ứng với cạnh huyền AC
=> \(DF=\frac{1}{2}AC\)
=> \(2DF=AC\)(2)
TỪ (1) VÀ (2) => \(BC\sqrt{2}=2DF\)
=> \(BC=DF\sqrt{2}\)
a: Xét tứ giác AECK có
AE//CK
AE=CK
Do đó: AECK là hình bình hành
b: Xét ΔEBC vuông tại B và ΔFCD vuông tại C có
EB=FC
BC=CD
=>ΔEBC=ΔFCD
=>góc BEC=góc CFD
=>góc CFD+góc ECB=90 độ
=>DF vuông góc CE tại M
c: Xét ΔDMC có
K là trung điểm của DC
KN//MC
=>N là trung điểm của DM
=>ND=NM
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
Câu b. Từ H kẻ đường thẳng song song AC cắt EM tại K
Ta chứng minh được BH/BM=EH/EA =>đpcm
Hình đa giác TenDaGiac1: DaGiac(D, C, 4) Hình đa giác TenDaGiac1: DaGiac(D, C, 4) Đoạn thẳng f: Đoạn thẳng [D, C] Đoạn thẳng g: Đoạn thẳng [C, B] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [A, D] Đoạn thẳng j: Đoạn thẳng [M, C] Đoạn thẳng k: Đoạn thẳng [D, N] Đoạn thẳng l: Đoạn thẳng [A, I] Đoạn thẳng m: Đoạn thẳng [D, M] Đoạn thẳng q: Đoạn thẳng [E, I] Đoạn thẳng r: Đoạn thẳng [A, E] Đoạn thẳng s: Đoạn thẳng [D, K] Đoạn thẳng b: Đoạn thẳng [B, H] Đoạn thẳng c: Đoạn thẳng [M, H] D = (-1.82, 1.18) D = (-1.82, 1.18) D = (-1.82, 1.18) C = (4.66, 1.22) C = (4.66, 1.22) C = (4.66, 1.22) Điểm B: DaGiac(D, C, 4) Điểm B: DaGiac(D, C, 4) Điểm B: DaGiac(D, C, 4) Điểm A: DaGiac(D, C, 4) Điểm A: DaGiac(D, C, 4) Điểm A: DaGiac(D, C, 4) Điểm M: Trung điểm của h Điểm M: Trung điểm của h Điểm M: Trung điểm của h Điểm N: Trung điểm của g Điểm N: Trung điểm của g Điểm N: Trung điểm của g Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm I: Giao điểm đường của j, k Điểm I: Giao điểm đường của j, k Điểm I: Giao điểm đường của j, k Điểm K: Giao điểm đường của n, g Điểm K: Giao điểm đường của n, g Điểm K: Giao điểm đường của n, g Điểm J: Giao điểm đường của k, r Điểm J: Giao điểm đường của k, r Điểm J: Giao điểm đường của k, r Điểm H: Giao điểm đường của t, a Điểm H: Giao điểm đường của t, a Điểm H: Giao điểm đường của t, a
a) Xét tam giác MBC và NCD có:
\(\widehat{MBC}=\widehat{NCD}=90^o\)
MB = NC
BC = CD
\(\Rightarrow\Delta MBC=\Delta NCD\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCB}=\widehat{NDC}\Rightarrow\widehat{MCB}+\widehat{INC}=\widehat{NDC}+\widehat{INC}=90^o\)
\(\Rightarrow\widehat{CIN}=180^o-90^o=90^o\Rightarrow MC\perp ND\)
b) Gọi giao điểm của AE và DN là J.
Xét tứ giác AMCE có AM song song và bằng EC nên AMCE là hình bình hành.
Vậy thì AE // MC \(\Rightarrow AE\perp DN\)
Xét tam giác vuoong DIC có IE là trung tuyến ứng với cạnh huyền nên EI = ED.
Xét tam giác cân EDI có EJ là đường cao nên nó cũng là phân giác \(\Rightarrow\widehat{DEA}=\widehat{IEA}\)
Vậy thì \(\Delta ADE=\Delta AIE\left(c-g-c\right)\Rightarrow AD=AI\Rightarrow AB=AI\)
c) Coi độ dài cạnh hình vuông là 1. Ta có :
\(MD=\sqrt{1^2+0,5^2}=\frac{\sqrt{5}}{2}\)
Kéo dài DM cắt BC tại H.Ta có DH = 2DM, HB = BC
Xét tam giác DHC, áp dụng tính chất đường phân giác trong, ta có:
\(\frac{KC}{KH}=\frac{DC}{DM}=\frac{1}{\sqrt{5}}\)
Lại có \(KC+KH=CH=2\Rightarrow HK=2-KC\)
\(\Rightarrow2-KC=\sqrt{5}KC\Rightarrow KC=\frac{2}{\sqrt{5}+1}\)
Suy ra \(KC+AM=\frac{2}{\sqrt{5}+1}+\frac{1}{2}=\frac{\sqrt{5}}{2}=MD\)
Vạy MD = KC + AM