Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x-5)y+2y-10=0 <=> 2xy-3y = 10 <=> y(2x-3)=10 <=> y=\(\frac{10}{2x-3}\) với y là số nguyên
=> 2x-3 là ước của 10
ta có bảng sau
2x-3 | 10 | 5 | 2 | 1 | -1 | -2 | -5 | -10 |
x | Loại | 4 | Loại | 2 | 1 | Loại | -1 | Loại |
y | 2 | 10 | -10 | -2 |
b)
3xy + 21x-y-11=0 <=> y(3x-1)=-(21x-11) <=> -y=\(\frac{21x-11}{3x-1}\) =\(\frac{7\left(3x-1\right)-4}{3x-1}\)=7-\(\frac{4}{3x-1}\)với -y nguyên nên 3x-1 là ước của 4
3x-1 | 4 | 2 | 1 | -1 | -2 | -4 |
x | Loại | 1 | Loại | 0 | Loại | -1 |
y | -5 | -11 | -8 |
a) ( 2x - 5 )y + 2y - 10 = 0
<=> 2xy - 5y + 2y - 10 = 0
<=> 2xy - 3y - 10 = 0
<=> y( 2x - 3 ) - 10 = 0
<=> y( 2x - 3 ) = 10
Ta có bảng sau :
2x-3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 1 | 2,5 | 0,5 | 4 | -1 | 6,5 | -3,5 |
y | 10 | -10 | 5 | -5 | 2 | -2 | 1 | -1 |
Vì x , y nguyên nên các cặp ( x ; y ) = { ( 2 ; 10 ) , ( 1 ; -10 ) , ( 4 ; 2 ) , ( -1 ; -2 ) }
b) 3xy + 21x - y - 11 = 0
<=> 3x( y + 7 ) - 1( y + 7 ) - 4 = 0
<=> ( 3x - 1 )( y + 7 ) - 4 = 0
<=> ( 3x - 1 )( y + 7 ) = 4
Ta có bảng sau :
3x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
y+7 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 2/3 | 0 | 1 | -1/3 | 5/3 | -1 |
y | -3 | -11 | -5 | -9 | -6 | -8 |
Vì x, y nguyên nên các cặp ( x ; y ) = { ( 0 ; -11 ) , ( 1 ; -5 ) , ( -1 ; -8 ) }
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(5x+30=-3xy+9y^2\)
\(\Leftrightarrow5x+30+3xy-9y^2=0\)
\(\Leftrightarrow x\left(3y+5\right)+25-9y^2+5=0\)
\(\Leftrightarrow x\left(3y+5\right)+\left(5-3y\right)\left(5+3y\right)=-5\)
\(\Leftrightarrow\left(3y+5\right)\left(x+5-3y\right)=-5\)
Đến đây lập bảng là xong
5x+30=-3xy+9y2
\(\Leftrightarrow x=\frac{9y^2-30}{5+3y}=3y-\frac{15y+30}{5+3y}=3y-5+\frac{5}{5+3y}.\)
Vì x,ynguyên => \(5⋮5+3y\)
\(\Rightarrow5+3y\in\left\{1,5,-1,-5\right\}\)
Đến đây thì đơn giản rồi :)))