Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :31111<32111=(25)111=2555
17139>16139=(24)139=2556
VÌ 2555<2556 SUY RA 31111<17139
kì thi giao lưu HSG năm 2010-2011 huyện Tam Dương
vào đó là có đáp án
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A\)= \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)
\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)
Vậy \(A< \frac{3}{2}\)
Chúc bạn học tốt !!!
\(2A=2+2^2+...+2^{10}\)
\(2A-A=\left(2+2^2+...+2^{10}\right)-\left(1+2+...+2^9\right)\)
\(A=2^{10}-1=1023\)
mà \(5\cdot2^8=1280\Rightarrow A< 5\cdot2^8\)
A = 1 + 2+22+23+...+29
2A = 2 + \(2^2+2^3+2^4+...+2^{10}\)
\(-\)
\(A=1+2+2^2+2^3+...+2^9\)
\(A=\)\(1-2^{10}\)
KL= tự so sánh nha
S = 1 + 2 + 2^2 + 2^3 + ... + 2^8
2S = 2(1 + 2 + 2^2 + 2^3 + ... + 2^8)
= 2 + 2^2 + 2^3 + 2^4 + ... + 2^9
2S - S = (2 + 2^2 + 2^3 + 2^4 + ... + 2^9) - (1 + 2 + 2^2 + 2^3 + ... + 2^8)
= 2^9 - 1
=> S = 2^9 - 1
Ta có: 5 . 2^8 = (4 + 1) . 2^8 = 4 . 2^8 + 2^8 = 2^2 . 2^8 + 2^8 = 2^10 + 2^8
Vì 2^9 - 1 < 2^10 + 2^8 => S < 5 . 2^8
tk cho mk nhé các bạn
thank you very much
chúc các bạn học giỏi
\(2S=2+2^2+...+2^{10}\)
\(2S-S=\left(2+2^2+...+2^{10}\right)-\left(1+2+...+2^9\right)\)
\(S=2^{10}-1=1023\)
\(5\cdot2^8=1280\)
\(\Rightarrow S< 5\cdot2^8\)
Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2.(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 29 + 210
2S - S = (2 + 22 + 23 + ... + 29 + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1
Mà 210 - 1 = 28 . 4 - 1
Ta thấy 28 . 4 - 1 < 5.28 => S < 5.28