K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

\(\frac{1}{2}M=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(M-\frac{1}{2}M=\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^3}+\frac{1}{2^3}\right)+...+\frac{1}{2}-\frac{1}{2^{100}}\)

\(M=\left(\frac{1}{2}-\frac{1}{2^{100}}\right).2=1-\frac{1}{2^{10000}}\)

Vậy M < 1 

25 tháng 4 2016

Ta có

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{3-2}{2.3}+\frac{4-3}{3.4}\frac{5-4}{4.5}+...+\frac{12-11}{11.12}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)

1/2^2+1/3^2+1/4^2+....+1/11^2<1/(2.3)+1/(3.4)+1/(4.5)+.....+1/(11.12)

                                                =1/2-13+1/3-1/4+1/5+.....+1/11-1/12

                                                =1/2-1/12=5/12

VẬY A<5/12

ks cho mình nhé

19 tháng 4 2017

\(M=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+....+\frac{1}{2^{43}}-\frac{1}{2^{46}}+\frac{1}{2^{49}}-\frac{1}{2^{52}}\)

Nên \(2^3.M=4-\frac{1}{2}+\frac{1}{2^4}-\frac{1}{2^7}+.....+\frac{1}{2^{46}}-\frac{1}{2^{52}}\)

Suy ra \(2^3.M-M=4-\frac{1}{2^{52}}\)hay\(7.M=4-\frac{1}{2^{52}}\).

Khi đó \(M=\frac{4}{7}-\frac{1}{2^{52}.7}< 1\)

Vì \(\frac{9}{4}>1;M< 1\)nên \(\frac{9}{4}>M\)

Vậy \(\frac{9}{4}>M\)

19 tháng 4 2017

M<\(\frac{9}{4}\)

ok nha

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

30 tháng 4 2018

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=3+1+\frac{1}{3}+...+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A\)=  \(\left(3+1+...+\frac{1}{3^{2013}}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^{2014}}\right)\)

\(\Rightarrow2A=3-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\frac{3-\frac{1}{3^{2014}}}{2}\)

\(\Rightarrow A=\frac{3}{2}-\frac{\frac{1}{3^{2014}}}{2}< \frac{3}{2}\)

Vậy  \(A< \frac{3}{2}\)

Chúc bạn học tốt !!! 

8 tháng 5 2016

Mình làm bài 2 nhé:

Ta có: \(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

....

\(\frac{1}{50^2}<\frac{1}{50\times51}=\frac{1}{50}-\frac{1}{51}\)

Tổng các vế ta sẽ có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}=\frac{49}{102}<1\)