Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1] chứng minh rằng ab - ab chia hết cho 9
Ta có:ab-ab=0\(⋮\)9
2] chứng minh rằng 7 mũ 8+ 7 mũ 7 - 7 mũ 6chia hết cho 55
Ta có:78+77-76=76.(72+7-1)=76.55\(⋮\)5
\(\overline{ab}-\overline{ba}\)
\(=\left(10a+b\right)-\left(10b+a\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
\(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\) chia hết cho 17(đpcm)
1 + 7 + 72 + ... + 7101
= (1 + 7) + 72.(1 + 7) + ... + 7100.(1 + 7)
= 8 + 72.8 + ... + 7100.8
= 8.(1 + 72 + ... + 7100) chia hết cho 8
\(M=7^1+7^2+7^3+7^4+7^5+7^6\)
\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)
\(\Rightarrow M=7.8+7^3.8+7^5.8\)
\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)
=7(7^0+7^1+7^2+7^3+7^4+7^5)
=7*19608
mà 19608 chia hết cho 8
Suy ra: 7*19608chia hết cho 8
Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
???
Làm gì chứng minh được 7 = 8