K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Bài làm:

a) Ta có: \(4^{10}-1=\left(4^5-1\right)\left(4^5+1\right)\) là hợp số

b) Ta có: \(2^{50}+1\)

\(=\left(2^{25}\right)^2+2.2^{25}+1-2^{26}\)

\(=\left(2^{25}+1\right)^2-\left(2^{13}\right)^2\)

\(=\left(2^{25}-2^{13}+1\right)\left(2^{25}+2^{13}+1\right)\) là hợp số

=> đpcm

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

k mk đi rùi mk giải cho

9 tháng 8 2016

giải đi rồi mình kick cho =='

5 tháng 1 2017

\(a\in N\Rightarrow\hept{\begin{cases}a^2+a+1\in N\\a^2+a+2\in N\end{cases}}\)

Dễ thấy a2+a+1 và a2+a+2 là 2 số tự nhiên liên tiếp, trong 2 số này có 1 số chia hết cho 2 

=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)\) là số chẵn

=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) cũng là số chẵn

=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) là hợp số (đpcm)

15 tháng 1 2017

Số 2 là số lẻ => dpcm

24 tháng 4 2019

a) ta có a>b (cộng 2 và 2 vế )

<=>  a+2 > b+2  (1)
ta có 2>-3 (cộng b vào 2 vế )

b+2>b-3  (2)

từ (1) và (2) => a+2 > b-3

17 tháng 7 2018

ta có : (10^50)^3<10^150+5*10^50+1<10^150+3*(10^50)^2+3*10^50+1= (10^50+1)^3

vay10^150+5*10^50+1 khong la lap phuong cua 2 so tu nhien

17 tháng 7 2018

Tham khảo .

Ta có :

\(\left(10^{53}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+1\)

\(=\left(10^{50}+1\right)^3\)

Vậy \(10^{150}+5.10^{50}+1\)không là lập phương của 1 số tự nhiên 

đpcm

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#