K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Từ điểm cuối của vectơ \(\overrightarrow {{\mu _1}} \) vẽ vectơ \(\overrightarrow {{\mu _3}}  = \overrightarrow {{\mu _2}} \)

Suy ra \(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}}  = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}}  \Rightarrow \left| {\overrightarrow \mu  } \right| = \left| {\overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}} } \right|\)

Ta có: \(\left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _2}} } \right) = 120^\circ  \Rightarrow \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right) = 60^\circ \)

\( \Rightarrow {\left| {\overrightarrow \mu  } \right|^2} = {\left| {\overrightarrow {{\mu _1}} } \right|^2} + {\left| {\overrightarrow {{\mu _3}} } \right|^2} - 2\left| {\overrightarrow {{\mu _1}} } \right|\left| {\overrightarrow {{\mu _3}} } \right|\cos \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right)\)

          \( = 1,{6^2} + 1,{6^2} - 2.1,6.1,6.\cos 60^\circ  = \frac{{64}}{{25}}\)

\( \Rightarrow \left| {\overrightarrow \mu  } \right| = \sqrt {\frac{{64}}{{25}}}  = 1,6\)

Vậy độ dài của \(\overrightarrow \mu  \) là 1,6 đơn vị

24 tháng 9 2023

Tham khảo:

\(\overrightarrow {CD}  = \overrightarrow {BA} \) do hai vectơ \(\overrightarrow {CD} ,\;\overrightarrow {BA} \) cùng hướng và \(CD = BA\).

\(\begin{array}{l} \Rightarrow \overrightarrow {CB}  + \overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} \\ \Leftrightarrow \left| {\overrightarrow {CB}  + \overrightarrow {CD} } \right| = \left| {\overrightarrow {CA} } \right| = CA\end{array}\)

 

Xét tam giác ABC, ta có:

\(BA = BC\) và \(\widehat {BAC} = \frac{1}{2}.\widehat {BAD} = {60^o}\)

\( \Rightarrow \Delta ABC\) đều, hay \(CA = BC = 1\)

Vậy \(\left| {\overrightarrow {CB}  + \overrightarrow {CD} } \right| = 1.\)

Dựa vào tính chất kết hợp, ta có:

\(\begin{array}{l}\overrightarrow {DB}  + \overrightarrow {CD}  + \overrightarrow {BA}  = \left( {\overrightarrow {DB}  + \overrightarrow {CD} } \right) + \overrightarrow {BA} \\ = \left( {\overrightarrow {CD}  + \overrightarrow {DB} } \right) + \overrightarrow {BA}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} .\\ \Rightarrow \left| {\overrightarrow {DB}  + \overrightarrow {CD}  + \overrightarrow {BA} } \right| = \left| {\overrightarrow {CA} } \right| = CA = 1.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1},{\Delta _2}\)  lần lượt có vectơ chỉ phương là \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \). Khi đó:

a) \({\Delta _1}\) cắt \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

b) \({\Delta _1}\) song song với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc một đường thẳng mà không thuộc đường thẳng còn lại.

c) \({\Delta _1}\) trùng với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc cả hai đường thẳng đó.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

+) ABCD là hình thoi nên cũng là hình bình hành

 Áp dụng quy tắc hình bình hành ta có:

 \(\overrightarrow p  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

 \(\Rightarrow  |\overrightarrow p|  = | \overrightarrow {AC}| =AC \)

+) \(\overrightarrow u  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow u|  = | \overrightarrow {DB}| =DB\)

+) \(\overrightarrow v  = 2\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {AB}  + \left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \overrightarrow {AB}  + \overrightarrow {CB} \)\( = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow v|  = | \overrightarrow {DB}| =DB\)

+ Tính \(AC, DB\)

Tam giác ABD có \(AB=AD=a, \widehat A = 60^o\) nên nó là tam giác đều. Do đó DB = a.

Gọi O là giao điểm hai đường chéo.

Ta có: \(AO = AB. \sin B = a. \sin 60^o = \frac {a \sqrt 3}{2} \Rightarrow  AC = a \sqrt 3\)

Vậy \(|\overrightarrow p|  =  a \sqrt 3 ,|\overrightarrow u|  =  a, |\overrightarrow v|  =  a.\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta thấy rô bốt đi từ A đến B, sau đó đi từ B đến C, vậy cả 2 lần di chuyển thì ta thấy điểm cuất phát là A và điểm kết thúc là C.

Suy ra vectơ biểu diễn sự dịch chuyển của rô bốt sau hai lần dịch chuyển là vectơ \(\overrightarrow {AC} \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Dựa vào hình vẽ ta có

a) \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) cùng phương thì hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\) song song

b) \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) không cùng phương thì hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\) cắt nhau

c) \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \) vuông góc thì hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\) vuông góc

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Vận tốc 240 km/h nên \(\left| {\overrightarrow v } \right| = AC = 240\)

Áp dụng các tính chất trong tam giác vuông ta có

\(AB = DC = AC.\cos (\widehat {CAB}) = 240.\cos (30^\circ ) = 120{\sqrt 3 }\)

\(AD = BC = AC.\sin (\widehat {CAB}) = 240.\sin (30^\circ ) = 120\)

b) Xem A là gốc tọa độ nên ta có \(\overrightarrow {AB}  = 120\overrightarrow i ,\overrightarrow {AD}  = 120{\sqrt 3 }\overrightarrow j ,\overrightarrow v  = \overrightarrow {AC}  = 120\overrightarrow i  + 120{\sqrt 3 }\overrightarrow j \)

c)

Ta có \(\overrightarrow v  = 120\overrightarrow i  + 120{\sqrt 3 }\overrightarrow j \)

Vậy tọa độ của vectơ \(\overrightarrow v \) là \(\left( {120;120{\sqrt 3 }} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Độ lớn của góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) và độ lớn của góc giữa hai vectơ \(\overrightarrow {IA} \),\(\overrightarrow {IB} \)có thể bẳng nhau hoặc bù nhau.

b) Nếu \(\left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) \le {90^o}\)thì \(\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\). Do đó,\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\) và \(\cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) \ge 0\).

Nếu \(\left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) > {90^o}\)thì \(\left( {{\Delta _1},{\Delta _2}} \right) = {180^o} - \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\). Do đó,\(\cos \left( {{\Delta _1},{\Delta _2}} \right) =  - \cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)\) và \(\cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right) < 0\).

Vậy ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {IA} ,{\rm{ }}\overrightarrow {IB} } \right)} \right|\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(AB = BC = CD = DA = 1;\)

            \(AC = BD = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{1^2} + {1^2}}  = \sqrt 2 \)

a) \(\overrightarrow a  = \overrightarrow {OB}  - \overrightarrow {OD}  = \overrightarrow {OB}  + \overrightarrow {DO}  = \left( {\overrightarrow {DO}  + \overrightarrow {OB} } \right) = \overrightarrow {DB} \)

\( \Rightarrow \left| {\overrightarrow a } \right| = \left| {\overrightarrow {DB} } \right| = DB = \sqrt 2 \)

b)  \(\overrightarrow b = \left( {\overrightarrow {OC}  - \overrightarrow {OA} } \right) + \left( {\overrightarrow {DB}  - \overrightarrow {DC} } \right)\)

   \( = \left( {\overrightarrow {OC}  + \overrightarrow {AO} } \right) + \left( {\overrightarrow {DB}  + \overrightarrow {CD} } \right) = \left( {\overrightarrow {AO}  + \overrightarrow {OC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DB} } \right)\)

   \( = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

\( \Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow {AB} } \right| = AB = 1\)

Chú ý khi giải:

Khi có dấu trừ phía trước ta thường thay bằng vectơ đối của nó và ngược lại

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)       Áp dụng quy tắc ba điểm ta có:

\(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \);

\(\overrightarrow b  + \overrightarrow a  = \overrightarrow {AE}  + \overrightarrow {EC}  = \overrightarrow {AC} \)

\( \Rightarrow \overrightarrow a  + \overrightarrow b  = \overrightarrow b  + \overrightarrow a \)

b)       Áp dụng quy tắc ba điểm ta có:

\(\left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \overrightarrow {CD}  = \overrightarrow {AC}  + \overrightarrow {CD}  = \overrightarrow {AD} \)

\(\overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow {AB}  + \left( {\overrightarrow {BC}  + \overrightarrow {CD} } \right) = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

\( \Rightarrow \left( {\overrightarrow a  + \overrightarrow b } \right) + \overrightarrow c  = \overrightarrow a  + \left( {\overrightarrow b  + \overrightarrow c } \right)\)