Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(cos\alpha=\dfrac{12}{13}\)
Mà: \(sin^2\alpha+cos^2a=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow sin\alpha=\dfrac{5}{13}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)
b) Ta có: \(cos\alpha=\dfrac{3}{5}\)
Mà: \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)
\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)
Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)
2:
a: BC=căn 16^2+12^2=20cm
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=3/5
cos B=sin C=AB/BC=4/5
tan B=cot C=3/5:4/5=3/4
cot B=tan C=1:3/4=4/3
b: AH=căn 13^2-5^2=12cm
Xét ΔAHC vuông tại H có
sin C=AH/AC=12/13
=>cos B=12/13
cos C=HC/AC=5/13
=>sin B=5/13
tan C=12/13:5/13=12/5
=>cot B=12/5
tan B=cot C=1:12/5=5/12
c: BC=3+4=7cm
AB=căn BH*BC=2*căn 7(cm)
AC=căn CH*BC=căn 21(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=căn 21/7
sin C=cos B=AB/BC=2/căn 7
tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21
cot B=tan C=1/căn 21/2=2/căn 21
a) Chọn C
b) Chọn C sai
- Vì đẳng thức đúng phải là: cos β = sin ( 90 ° - β )
1) a) Từ C dựng đường cao CF
Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1)
Từ A dựng đường cao AH
Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2)
(1), (2) => đpcm
b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)
Có: \(BF=c-AF=c-b.\cos A\)
Py-ta-go:
\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)
\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm)
c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)
bài 2 mk có làm r bn ib mk gửi link nhé
\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)
\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)
\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)
1+tan^2x
\(=1+\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2+AC^2}{AC^2}=\dfrac{BC^2}{AC^2}\)
=1/cos^2x
Chọn C sai
- Vì đẳng thức đúng phải là: cos β = sin(90o - β)
Đáp án là D