K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

x3-x2-x+2

=(x3-x)+(-2x2+2)

=x(x2-1)-2(x2-1)

=(x-2)(x2-1)

=(x-2)(x+1)(x-1)

19 tháng 3 2020

sai bn ơi x^2 mà

20 tháng 11 2015

a) (x + 2)2 - (x - 2)2 = (x + 2 - x + 2)(x + 2 + x - 2) = 4.2x = 8x

b) (x + 1)3 + (x - 1)3 - 2

= x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 - 2

= 2x3 + 6x - 2

= 2.(x3 + 3x - 1)

3 tháng 11 2015

\(M=7\sqrt{x-1}-\sqrt{x^3-x^2}+x-1\)

\(=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}-\left(\sqrt{x-1}\right)^2\)

\(=\sqrt{x-1}\left(7-\sqrt{x^2}-\sqrt{x-1}\right)\)

\(=\sqrt{x-1}\)(7 - /x/ - \(\sqrt{x-1}\) )

1 tháng 8 2017

\(\left(x-3\right).\left(x+3\right)\)\(+\left(x-3\right)\left(x+4\right)\)=\(\left(x-3\right)\left(x+3+x+4\right)=\left(x-3\right)\left(2x+7\right)\)

28 tháng 7 2020

Trả lời:

\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)

                               \(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)

                               \(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)

\(x-9+y-2\sqrt{xy}=\left(x-2\sqrt{xy}+y\right)-9\)

                                          \(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)

                                          \(=\left(\sqrt{x}-\sqrt{y}-3\right).\left(\sqrt{x}-\sqrt{y}+3\right)\)

\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)

                               \(=\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)\)

                               \(=\left(\sqrt{x}-3\right).\left(\sqrt{x}+1\right)\)

Học tốt 

10 tháng 10 2019

3x^3-3x^2-3x=1

4x^3=(x+1)^3

x=1/(căn 3 của 4) -1

29 tháng 10 2020

\(x=3+2\sqrt{2}\)    

\(x-3-2\sqrt{2}=0\)    

\(x-\left(3+2\sqrt{2}\right)=0\)   Vậy nhân tử của \(x=3+2\sqrt{2}\)   là \(x-\left(3+2\sqrt{2}\right)\)

\(C=x^2\left(x^2+x+1\right)-2x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-2x+3\right)\)

21 tháng 8 2015

x3-x2-4=x3-2x2+x2-4=x2(x-2)+(x-2)(x+2)=(x-2)(x2+x+2)

10 tháng 6 2017

\(x^3-x^2-4\)

\(=x^3+x^2-2x^2-4\)

\(=\left(x^3-2x^2\right)+\left(x^2-4\right)\)

\(=x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)