K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

a) (x + 2)2 - (x - 2)2 = (x + 2 - x + 2)(x + 2 + x - 2) = 4.2x = 8x

b) (x + 1)3 + (x - 1)3 - 2

= x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 - 2

= 2x3 + 6x - 2

= 2.(x3 + 3x - 1)

NV
9 tháng 4 2021

\(\Leftrightarrow x^3-\left(m-1\right)x^2-\left(m-1\right)x-2x^2+2\left(m-1\right)x+2m-2=0\)

\(\Leftrightarrow x\left(x^2-\left(m-1\right)x-m+1\right)-2\left(x^2-\left(m-1\right)x-m+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-\left(m-1\right)x-m+1\right)=0\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Biểu thức này không phân tích thành nhân tử.

20 tháng 11 2021

câu b sai r 

\(\dfrac{1}{3}xy+x^2z+xz=3x\left(\dfrac{1}{9}y+\dfrac{1}{3}xz+\dfrac{1}{3}z\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Lời giải:

a.

$=\frac{1}{2}(x^2-4y^2)=\frac{1}{2}[x^2-(2y)^2]=\frac{1}{2}(x-2y)(x+2y)$

b.

$=\frac{1}{3}x(y+3xz+3z)$

c.

$=\frac{2}{25}x(225x^2-4)=\frac{2}{25}(15x-2)(15x+2)$

d.

$=\frac{1}{5}x^2(2+25x+5y)$

20 tháng 11 2021

\(a,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ b,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)

\(x+3\sqrt{x+2}-2\)

\(=x+2+3\sqrt{x+2}-4\)

\(=\left(\sqrt{x+2}\right)^2+4\sqrt{x+2}-\sqrt{x+2}-4\)

\(=\left(\sqrt{x+2}+4\right)\left(\sqrt{x+2}-1\right)\)

NV
29 tháng 1

\(x+3\sqrt{x+2}-2=x+2+3\sqrt{x+2}-4\)

\(=x+2-\sqrt{x+2}+4\sqrt{x+2}-4\)

\(=\sqrt{x+2}\left(\sqrt{x+2}-1\right)+4\left(\sqrt{x+2}-1\right)\)

\(=\left(\sqrt{x+2}-1\right)\left(\sqrt{x+2}+4\right)\)

19 tháng 11 2021

\(a,=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\\ b,=\dfrac{1}{3}x\left(y+3xz+3z\right)\\ c,=2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)

\(d,=x^2\left(\dfrac{2}{5}+5x+y\right)\\ e,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ f,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ g,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)