
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)\(x^4-2x^3+2x-1=x^4-x^3-x^3+x+x-1\)
\(=x^3\left(x-1\right)-x\left(x^2-1\right)+\left(x-1\right)\)
\(=x^3\left(x-1\right)-x\left(x-1\right)\left(x+1\right)+\left(x-1\right)\)
\(=x^3\left(x-1\right)-\left(x^2+x\right)\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left[x^3-\left(x^2+x\right)+1\right]\)
\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)^3\left(x+1\right)\)
b)\(x^4+2x^3+2x^2+2x+1=x^4+x^3+x^3+x^2+x^2+x+x+1\)
\(=x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+x+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(x+1\right)\left(x+1\right)\left(x^2+1\right)\)
\(=\left(x+1\right)^2\left(x^2+1\right)\)

x4 + 2x3 + 2x2 + 2x + 1
= x4 - 2x2 =
= x2 x x2 - x2 - x2 + 1 = x2 (1- x2 ) + ( 1 - x2 )
= ( 1 - x2 ) x ( 1 - x2 )
= ( 1 - x2 ) 2
- SKT_Twisted Fate Âm Phủ
- Sai rồi :
- \(x^4-2x^2=?\)



=x2 (1-x2 ) + 2x2 (x+1)
=-x2 (x2-1) + 2x2 (x+1)
= -x2 (x+1)(x-1) + 2x2 (x-1)
Đến đây đã xuất hiện nhân tử chung là (x-1)
Em chỉ việc nhóm vào là xong
Chúc em học giỏi!



(x2+2x)2-2(x2+2x)-3
=(x2+2x)(x2+2x-2)-3
Đặt t=x2+2x ta có:
t(t-2)-3=t2-2t-3
=(t-3)(t+1)=(x2+2x-3)(x2+2x+1)
=(x-1)(x+3)(x+1)2
(x^2+2x)^2-2(x^2+2x)-3
=(x^2+2x)(x^2+2x-2)-3
=(x^2+2x)(x^2+2x-5)
\(x^3+2x^2+2x+1\)
↔ \(\left(x^3+1\right)\)\(+\left(2x^2+2x\right)\)
↔ \(\left(x-1\right)\left(x^2-x+1-2x\right)\)
↔ \(\left(x+1\right)\left(x^2+x+1\right)\)
Chúc bạn học tốt !!!
x3+2x2+2x+1
=x3+x2+x+x2+x+1
=x(x2+x+1)+(x2+x+1)
=(x+1)(x2+x+1)