
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(x^4+3x^2+36\)
\(=\left(x^2\right)^2+2.x^2.6+6^2-9x^2\)
\(=\left(x^2+6\right)^2-\left(3x\right)^2=\left(x^2-3x+6\right)\left(x^2+3x+6\right)\)
\(2x^4-3x^3-7x^2+6x+8\)
\(=2x^4+2x^3-5x^3-5x^2-2x^2-2x+8x+8\)
\(=2x^3\left(x+1\right)-5x^2\left(x+1\right)-2x\left(x+1\right)+8\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(=\left(x+1\right)\left[2x^2\left(x-2\right)-x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
Chúc bạn học tốt.


a, \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+3\right)\text{[}x\left(x+1\right)+2\left(x+1\right)\text{]}\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
b, \(2x^3+3x^2+3x+2\)
\(=2x^3+2x^2+x^2+x+2x+2\)
\(=2x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2+x+2\right)\)
c, \(x^3-4x^2-8x+8\)
\(=x^3+2x^2-6x^2-12x+4x+8\)
\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-6x+4\right)\)


phân tích thành nhân tử
x3+3x2+6x+4
= x3 + 3x2 + 3x + 1 + 3x + 3
= (x + 1)3 + 3(x + 1)
= (x + 1) \([\left(x+1\right)^2+3]\)
= (x + 1) (x2 + 2x + 4)
Tớ ko chắc đâu.
Học tốt
\(x^3+3x^2+6x+4\)
\(=x^3+x^2+2x^2+2x+4x+4\)
\(=\left[x^3+x^2\right]+\left[2x^2+2x\right]+\left[4x+4\right]\)
\(=x^2\left[x+1\right]+2x\left[x+1\right]+4\left[x+1\right]\)
\(=\left[x+1\right]\left[x^2+2x+4\right]\)

a) \(3x^2-5x-8\)
\(=3x^2+3x-8x-8\)
\(=3x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-8\right)\)
b) \(x^4+6x^3+9x^2-16\)
\(=\left(x^2+3x\right)^2-16\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+4\right)\)
\(=\left(x^2-x+4x-4\right)\left(x^2+3x+4\right)\)
\(=\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2+3x+4\right)\)
\(=\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)\)

nếu có thể các bạn dùng phương pháp đồng nhất hệ số hộ mình nhé ^^
\(x^4-3x^3+6x^2-5x+3\)
\(=x^4-2x^3+3x^2-x^3+2x^2-3x+x^2-2x+3\)
\(=x^2\left(x^2-2x+3\right)-x\left(x^2-2x+3\right)+\left(x^2-2x+3\right)\)
\(=\left(x^2-x+1\right)\left(x^2-2x+3\right)\)
Đây là phương pháp hệ số bất định. Chắc bạn đang học nâng cao nên cũng đọc rồi.
Chúc bạn học tốt.

\(=\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

a) \(2x\left(x-3\right)^2+5x\left(3-x\right)\)
\(=2x\left(x-3\right)^2-5x\left(x-3\right)\)
\(=\left(x-3\right)\left[2x\left(x-3\right)-5x\right]\)
\(=\left(x-3\right)\left(2x^2-6x-5x\right)\)
\(=\left(x-3\right)\left(2x^2-11x\right)\)
\(=x\left(x-3\right)\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4\left(y^2-2y+1\right)\)
\(=\left(x+3\right)^2-2^2\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2\left(y-1\right)\right]^2\)
\(=\left[\left(x+3\right)-2\left(y-1\right)\right]\left[\left(x+3\right)+2\left(y-1\right)\right]\)
\(=\left(x+3-2y+2\right)\left(x+3+2y-2\right)\)
\(=\left(x-2y+5\right)\left(x+2y+1\right)\)
a) \(2x.\left(x-3\right)^2+5x.\left(-x+3\right)=2x.\left(x-3\right)^2-5x.\left(x-3\right)\)
\(=\left(x-3\right).\left(2x^2-11x\right)=\left(x-3\right).x.\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4.\left(y^2-2y+1\right)=\left(x+3\right)^2-2^2.\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2.\left(y-1\right)\right]^2=\left(x-2y+1\right).\left(x+2y+5\right)\)
\(x^3-3x^2-6x+8\\ =\left(x^3+8\right)-3x\left(x+2\right)\\ =\left(x+2\right)\left(x^2-2x+4\right)-3x\left(x+2\right)\\ =\left(x+2\right)\left(x^2-5x+4\right)\\ =\left(x+2\right)\left(x-4\right)\left(x-1\right)\)
bước 3 đến 4 là sao mình ko hiểu nhỉ