Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2.( x - 1 ) + 16.( 1 - x )
= x2.( x - 1 ) - 16.( x - 1 )
= ( x - 1 ).( x2 - 16 )
= ( x - 1 ).( x2 - 42 )
= ( x - 1 ).( x + 4 ).( x - 4 )
Lời giải
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\)\(\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x^2-4^2\right)\)
\(=\left(x-1\right)\left(x+4\right)\left(x-4\right)\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Biểu thức không thể phân tích nhân tử với các số hữu tỉ
Nguyễn Nhật Nguyên :được nhé bạn ! hệ số khủng quá,đại ý là thế này:
Mọi đa thức dạng \(x^{3m+1}+x^{3n+2}+1\) đều có nhân tử là \(x^2+x+1\)
\(x^{16}+x^{14}+1\)
\(=\left(x^{16}-x\right)+\left(x^{14}-x^2\right)+x^2+x+1\)
\(=x\left(x^{15}-1\right)+x^2\left(x^{12}-1\right)+x^2+x+1\)
\(=x\left[\left(x^3\right)^5-1\right]+x^2\left[\left(x^3\right)^4-1\right]+x^2+x+1\)
Đến đây bạn rảnh bạn làm mik nốt nha,khá là dài
1/ \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2=x^4+10x^3+32x^2+40x+16\)(làm tắt nhưng chắc bạn tự hiểu đc)
\(=\left(x^4+2x^3\right)+\left(4x^2+2x^3\right)+\left(12x^2+6x^3\right)+\left(4x^2+8x\right)+\left(12x^2+24x\right)+\left(8x+16\right)\)
\(=x^3\left(x+2\right)+2x^2\left(2+x\right)+6x^2\left(2+x\right)+4x\left(x+2\right)+12x\left(x+2\right)+8\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3+2x^2+6x^2+4x+12x+8\right)=\left(x+2\right)\left(x^3+8x^2+16x+8\right)\)
\(=\left(x+2\right)\left[\left(x^3+2x^2\right)+\left(6x^2+12x\right)+\left(4x+8\right)\right]=\left(x+2\right)\left[x^2\left(x+2\right)+6x\left(x+2\right)+4\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)
2/ \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=x^4+20x^3+140x^2+400x+400\)
\(=\left(x^4+10x^3+20x^2\right)+\left(10x^3+100x^2+200x\right)+\left(20x^2+200x+400\right)\)
\(=x^2\left(x^2+10x+20\right)+10x\left(x^2+10x+20\right)+20\left(x^2+10x+20\right)\)
\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)=\left(x^2+10x+20\right)^2\)
a)x5+x2-x2+x-1 = x2(x3+1) - (x2-x+1)
=x2(x+1)(x2-x+1) - (x2-x+1)
=(x2-x+1)(x3+x2-1)
x2(x-1)+16(1-x)
=x2(x-1)+16(x-1)
=(x-1)(1x+16)
\(=x^2.\left(x-1\right)-16.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^2-16\right)\)
\(=\left(x-1\right).\left(x-4\right).\left(x+4\right)\)