Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$
b.
$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$
c.
$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$
$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$
d.
$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$
$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$
$=(\sqrt{x}-2)(\sqrt{x}+1)^2$
a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x-4\sqrt{x-2}-2+4\)
\(=\left(x-2\right)-4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}-2\right)^2\)
b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)
\(=x+4\sqrt{x-2}+4-2\)
\(=\left(x-2\right)+4\sqrt{x-2}+4\)
\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)
\(=\left(\sqrt{x-2}+2\right)^2\)
c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)
d) Tương tự.
a,b) Không hiểu
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)
\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)
a: =(căn a-3)^2-b^2
=(căn a-3-b)(căn a-3+b)
b: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
c: \(x-7\sqrt{x}+12=x-3\sqrt{x}-4\sqrt{x}+12=\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)\)
d: x*căn x-64
=(căn x)^3-4^3
=(căn x-4)(x+4căn x+16)
\(a-6\sqrt{a}+9-b^2\\ =\left(\sqrt{a}+3\right)^2-b^2\\ =\left(\sqrt{a}+3-b\right)\left(\sqrt{a}+3+b\right)\)
\(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
\(x-7\sqrt{x}+12\\ =x-4\sqrt{x}-3\sqrt{x}+12\\ =\sqrt{x}\left(\sqrt{x}-4\right)-3\left(\sqrt{x}-4\right)\\ =\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\)
\(x\sqrt{x}+64\\ =\sqrt{x^3}+4^3\\ =\left(\sqrt{x}\right)^3+4^3\\ =\left(\sqrt{x}+4\right)\left(x-4\sqrt{x}+16\right)\)
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
\(x-7=\left(\sqrt{x}\right)^2-\left(\sqrt{7}\right)^2=\left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right)\)( \(x\ge0\))
\(x-6\sqrt{x}+9=\left(\sqrt{x}\right)^2-2.3.\sqrt{x}+3^2=\left(\sqrt{x}-3\right)^2\)( \(x\ge0\))
Em mới lớp 8 nên không dám chắc ạ :(