K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

x^4-x^2-2x-1=x4-(x2+2x+1)=(x2)2-(x+1)2=[x2-(x+1)][x2+(x+1)]=(x2-x-1)(x2+x+1)

11 tháng 7 2016

a)\(x^4-2x^3+2x-1=x^4-x^3-x^3+x+x-1\)

\(=x^3\left(x-1\right)-x\left(x^2-1\right)+\left(x-1\right)\)

\(=x^3\left(x-1\right)-x\left(x-1\right)\left(x+1\right)+\left(x-1\right)\)

\(=x^3\left(x-1\right)-\left(x^2+x\right)\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left[x^3-\left(x^2+x\right)+1\right]\)

\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x-1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

b)\(x^4+2x^3+2x^2+2x+1=x^4+x^3+x^3+x^2+x^2+x+x+1\)

\(=x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x^2+x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]\)

\(=\left(x+1\right)\left(x+1\right)\left(x^2+1\right)\)

\(=\left(x+1\right)^2\left(x^2+1\right)\)

11 tháng 7 2016

a) =

\(x^4-x^3-x^3+x^2-x^2+x+x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

17 tháng 8 2016

\(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+x^3+x\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

18 tháng 9 2019

33+b3+c3-3abc

x+ 2x+ 2x+ 2x + 1

= x- 2x

= xx x- x- x+ 1 = x(1- x) + ( 1 - x2 ) 

= ( 1 - x) x ( 1 - x2 ) 

= ( 1 - x2

  • SKT_Twisted Fate Âm Phủ
  • Sai rồi :
  • \(x^4-2x^2=?\)
  •  
27 tháng 10 2020

Đơn giản thôi :]>

Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )

P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )

⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4

⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4

Đồng nhất hệ số ta được : 

\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)

( x2 + dx + 2 )( x2 + ax - 2 )

= ( x2 + 2 )( x2 - x - 2 )

= ( x2 + 2 )( x2 - 2x + x - 2 )

= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]

= ( x2 + 2 )( x - 2 )( x + 1 )

=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )

19 tháng 8 2018

=x2 (1-x2 ) + 2x2 (x+1)
=-x2 (x2-1) + 2x2 (x+1)
= -x2 (x+1)(x-1) + 2x2 (x-1)
Đến đây đã xuất hiện nhân tử chung là (x-1) 
Em chỉ việc nhóm vào là xong
Chúc em học giỏi!

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)