Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(M=7\sqrt{x-1}-\sqrt{x^3-x^2}+x-1\)
\(=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+x-1\)
\(=7\sqrt{x-1}-x\sqrt{x-1}+\left(\sqrt{x-1}\right)^2\)
\(=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(\sqrt{x-1}+2\right)\left(\sqrt{x-1}-3\right)\)
\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)
\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)
a, \(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b, \(x^2-2\sqrt{2}x+2=x^2-2\sqrt{2}x+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
c, \(x^2+2\sqrt{13}x+13=x^2+2\sqrt{13}x+\left(\sqrt{13}\right)^2=\left(x+\sqrt{13}\right)^2\)
a) \(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b) \(x^2-2\sqrt{2}x+2=x^2-2.x.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
c) \(x^2+2\sqrt{13}x+13=x^2+2.x.\sqrt{13}+\left(\sqrt{13}\right)^2=\left(x+\sqrt{13}\right)^2\)
=\(\sqrt{5}.\sqrt{2}+7\sqrt{2}\)
=\(\sqrt{2}.\left(\sqrt{5}+7\right)\)
À nhấm. nó là \(\left(\left|x\right|-1\right)^2-2=\left(\left|x\right|-1-\sqrt{2}\right)\left(\left|x\right|-1+\sqrt{2}\right)\)
Ta có: x 2 - 7 = x 2 - 7 2 = (x + 7 )(x - 7 )