\(\left(a+b+c\right)^3\) \(-\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-4\left(a^3+b^3+c^3\right)-12abc\)

\(=-3\left(a^3+b^3+c^3\right)+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-12abc\)

\(=-3\left(\left(a^3+b^3+c^3\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc\right)\)

XONG NHAAAAA :3333333

26 tháng 9 2016

(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến

11 tháng 10 2017

 k bt nhoak

Bài 2:

a)A= \(6x^2\)\(-11x+3\)

<=>A=\(6x^2\)\(-2x-9x+3\)

<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)

=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)

<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)

=>A=(3x-1)(2x+3)

20 tháng 4 2017

Bài giải:

a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)

=(x + 1313)(x21313x + 1919)

b) (a + b)3 – (a - b)3

= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)

= 2b . (3a3 + b2)

c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]

= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]

= 2a . (a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3

e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3

15 tháng 6 2017

WOW !!! Tốc độ đánh máy của bạn thần thánh thật đấy......2 phút mà nhiều quá trời luôn

9 tháng 4 2019

Đặt \(a+b=m;a-b=n\)

Ta có:\(\Rightarrow\hept{\begin{cases}\left(a+b\right)^2=m^2\\\left(a-b\right)^2=n^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2+2ab+b^2=m^2\\a^2-2ab+b^2=n^2\end{cases}}\Rightarrow\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=m^2-n^2\)

\(\Rightarrow4ab=m^2-n^2\)

Mặt khác :\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=m\left(n^2+\frac{m^2+n^2}{4}\right)\)

Ta lại có:\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)

\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-12abc\)

\(=m^3+3m^2c+3c^2m+c^3-4\left(mn^2+\frac{m^2-n^2}{4}+c^3\right)-12abc\)

\(=m^3+3m^2c+3c^2m+c^3-4\left(\frac{4mn^2+m^3-mn^2}{4}+c^3\right)-3c\left(m^2-n^2\right)\)

\(=m^3+3m^2c+3c^2m+c^3-4\cdot\frac{m^3+3mn^2}{4}-4c^3-3cm^2+3cn^2\)

\(=m^3+3cm^2+3c^2m+c^3-m^3-3mn^2-4c^3-3cm^2+3cn^2\)

\(=\left(m^3-m^3\right)+\left(3cm^2-3cm^2\right)+3c^2m+\left(c^3-4c^3\right)+3cn^2-3mn^2\)

\(=3c^2m-3c^3+3cn^2-3mn^2\)

\(=3\left(c^2m-c^3+cn^2-mn^2\right)\)

\(=3\left[c^2\left(m-c\right)+n^2\left(c-m\right)\right]\)

\(=3\left(c^2-n^2\right)\left(m-c\right)\)

\(=3\left(c-n\right)\left(c+n\right)\left(m-c\right)\)

\(=3\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\)

P/S:Bài giải dài.có j sai thông cảm cho e nha!

31 tháng 5 2020

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)

\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)

và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)

Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)

Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3

19 tháng 12 2017

nham nha mn, phai  laf 2(a^4+b^4)>=(a+b)(a^3+b^3)

5 tháng 11 2016

a/ x3 + xz + y2 z - xyz + y3 

= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)

= (x2 - xy + y2)(x + y + z)

5 tháng 11 2016

Nhiều vậy. Xíu m làm

13 tháng 8 2019

\(\left(a-b\right)^2-\left(b-a\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+1\right)\)

13 tháng 8 2019

\(5\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)\)

\(=\left(a+b\right)\left[5\left(a+b\right)-\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[5a+5b-a+b\right]\)

\(=\left(a+b\right)\left[4a+6b\right]\)