\(x^4+1\)thành nhân tử

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

<=>x4-x+x+x+1= x (x-1) (x2+x+1)  +  (x2+x+1)  =   (x2+x+1)(x2-x+1)

chắc có lẽ đúng đó

9 tháng 11 2016

x5 + x4 + 1 = x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1

= x2 ( x3 - x - 1 ) - x ( x3 - x - 1 ) + 1 ( x3 - x - 1 )

= ( x3 - x - 1 ) ( x2 - x + 1 )

 

9 tháng 11 2016

x5+x4+1

= x5+x2-x2+x4-x+x+1

=x2(x3-1) + (x3+1) +x2+x+1

= x2(x-1)(x2+x+1)+x(x-1)( x2+x+1) +x2+x+1

=( x2 + x+1)( x3-x2+x2-x+1)

=(x2 + x+1)( x3-x+1)

31 tháng 10 2019

\(P\left(x\right)=4x^4+1\)

\(=4x^4+4x^2+1-4x^2\)

\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)

\(=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)

31 tháng 10 2019

\(P\left(x\right)=4x^4+1\)

              \(=\left(\sqrt{4}x^2\right)^2+1^2\)

                \(=\left(2x^2\right)^2+1^2\)

               \(=\left(2x^2+1\right)^2-4x^2\)

                \(=\left(2x^2+1\right)^2-\left(2x\right)^2\)

                  \(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

20 tháng 10 2017

\(x^4+x^2+1\)

\(=x^4+2x^2+1+x^2-2x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2+1-x\right).\left(x^2+1+x\right)\)

20 tháng 10 2017

Vì phương trình x4+x2+1=0 vô nghiệm nên không thể phân tích thành nhân tử

11 tháng 12 2019

\(x^8+x^4+1\)

\(=\left(x^4\right)^{^2}+2x^4+1-x^4\)

\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1\right)^{^2}-\left(x^2\right)^{^2}\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

22 tháng 8 2020

Ta có : x4 + x2 + 1

= x4 + x2 + x2 + 1 - x2

= (x2 + 1)2 - x2

= (x2 + 1 - x)(x2 + 1 + x)

22 tháng 8 2020

x4 + x2 + 1

= x4 + 2x2 + 1 - x2

= ( x2 + 1 )2 - x2

= ( x2 - x + 1 )( x2 + x + 1 )

\(x^8+x^4+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

\(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=\left(x^5-x^4+x^3\right)-\left(x^3-x^2+x\right)-\left(x^2-x+1\right)\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)

Ủng hộ nha ^ _ ^

2 tháng 8 2016

\(x^4+x^3+x^2-1\)

\(=x^2\left(x^2-1\right)+x^2-1\)

\(=\left(x^2+1\right)\left(x^2-1\right)\)