![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn
Đặt là x,y,z
Chứng minh được là \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+y+z\right)^3=x^3+y^3+z^3+\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(\left(x+y+z\right)^3-x^3+y^3+z^3\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
=(x+y+z-x)[(x+y+z)2+x(x+y+z)+x2)-(y+z)(y2-yz+z2)
=(y+z)(x2+y2+z2 +x2+xy +xz+x2 +2xy +2yz +2xz) -(y+z)(y2-yz+z2)
=(y+z)(3x2+3xy+3yz+3xz)
=3(y+z)(x+y)(x+z)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]\)\(-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2yz+2xz+x^2+xy+xz+x^2\right)\)\(-\left(y+z\right)\left(y^2-z+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3yz+3xz\right)\)
\(=3\left(y+z\right)\left(x+y\right)\left(y+z\right)\)
\(\)
\(=3x^2y+3xy^2+3x^2z+3xz^2+3y^2z+3yz^2+6xyz\)
k mình nha
\(=3xy\left(x+y\right)+3z^2\left(x+y\right)+3z\left(x^2+2xy+y^2\right)\)
\(=\)\(\left(x+y\right)\left(3xy+3z^2+3xz+3yz\right)=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(k\)mình nha !!!