![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng dẫn
Đặt là x,y,z
Chứng minh được là \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+y+z\right)^3=x^3+y^3+z^3+\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(\left(x+y+z\right)^3-x^3+y^3+z^3\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: (x-y)^3+(y-z)^3+(z-x)^3
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2)
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2)
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2)
Đến đây thì bn đã có nhân tử chung là (z-x).
![](https://rs.olm.vn/images/avt/0.png?1311)
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
=(x+y+z-x)[(x+y+z)2+x(x+y+z)+x2)-(y+z)(y2-yz+z2)
=(y+z)(x2+y2+z2 +x2+xy +xz+x2 +2xy +2yz +2xz) -(y+z)(y2-yz+z2)
=(y+z)(3x2+3xy+3yz+3xz)
=3(y+z)(x+y)(x+z)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]\)\(-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2yz+2xz+x^2+xy+xz+x^2\right)\)\(-\left(y+z\right)\left(y^2-z+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3yz+3xz\right)\)
\(=3\left(y+z\right)\left(x+y\right)\left(y+z\right)\)
\(\)