Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-9x^2+6x+16=\left(x^3+x^2\right)-\left(10x^2+10x\right)+\left(16x+16\right)\)
\(=x^2.\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-10x+16\right)\)
\(=\left(x+1\right).\left[\left(x^2-8x\right)-\left(2x-16\right)\right]\)
\(=\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
x3 + 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2
x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x
x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x2 - 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16
k mk nha
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
\(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(x^3+3x^2-9x-27=\left(x-3\right)\left(x^2+3x+9\right)+3x\left(x-3\right)=\left(x-3\right)\left(x^2+6x+9\right)=\left(x-3\right)\left(x+3\right)^2\)
b) \(9x^3+6x^2+x\)
\(=x\left(9x^2+6x+1\right)\)
\(=x\left(3x+1\right)^2\)
c) \(x^4+5x^3+15x-9\)
\(=\left(x^4-9\right)+5x\left(x^2+3\right)\)
\(=\left(x^2-3\right)\left(x^2+3\right)+5x\left(x^2+3\right)\)
\(=\left(x^2+3\right)\left(x^2-3+5x\right)\)
a) \(x^2-y^2+10y-25\)
\(=x^2-\left(y^2-10y+25\right)\)
\(=x^2-\left(y-5\right)^2\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
\(x^2-6x+5\)= \(\left(x^2-x\right)-\left(5x-5\right)=x.\left(x-1\right)-5.\left(x-1\right)\)= \(\left(x-1\right)\left(x-5\right)\)
\(x^2-9x-10=x^2-10x+x-10\)= \(x.\left(x-10\right)+x-10=\left(x+1\right)\left(x-10\right)\)
\(x^3+9x^2+6x-16\)
\(=x^3+x^2-2x+8x^2+8x-16\)
\(=x\left(x^2+x-2\right)+8\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x+8\right)\)
\(=\left(x^2-x+2x-2\right)\left(x+8\right)\)
\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x+8\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x+8\right)\)