\(x^3+2x^2+2x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

\(=x^3+1+2x^2+2x\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

15 tháng 10 2016

a) \(x^4-2x^3+2x-1\)

\(=x^4-x^3-x^3+2x-2+1\)

\(=\left(x^4-x^3\right)+\left(2x-2\right)-\left(x^3-1\right)\)

\(=x^3\left(x-1\right)+2\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x^3+2-x^2-x-1\right)\)

\(=\left(x-1\right)\left(x^3-x^2-x+1\right)\)

\(=\left(x-1\right)\left[\left(x^3-x^2\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

b) \(x^4+2x^3+2x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+2x\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

26 tháng 7 2018

\(e,x^2-y^2+2x+1=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)

\(f,x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

30 tháng 9 2018

\(x^2-y^2+2x+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x-y+1\right)\left(x+y+1\right)\)

hk tốt

^^

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

29 tháng 1 2019

\(x^4+2x^3+3x^2+2x+1.\)

\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)
\(=x^4+x^3+x^2+x^3+x^2+x+x^2+x+1\)

\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x+1\right)^2+x\left(x+1\right)^2+\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left(x^2+x+1\right)\)

\(=\left(x+1\right)^2\left(x+1\right)^2\)

\(=\left(x+1\right)^4\)

29 tháng 1 2019

@wi

\(x^2+x+1=\left(x+1\right)^2???\)

\(x^2+2x+1=\left(x+1\right)^2\)chứ

4 tháng 8 2017

a, \(x^4-x^3-x^3+x^2-x^2+x+x-1\)\(1\)

=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\)

=\(\left(x-1\right)\left(x^3+x^2-x+1\right)\)

b, \(\left(ab-1\right)^2+\left(a+b\right)^2\)

=\(a^2b^2-2ab+1+a^2+2ab+b^2\)

=\(a^2b^2+a^2+b^2+1\)

=\(a^2\left(b^2+1\right)+\left(b^2+1\right)\)

=\(\left(b^2+1\right)\left(a^2+1\right)\)

c,\(x^4+2x^3+2x^2+2x+1\)

=\(x^4+x^3+x^3+x^2+x^2+x+x+1\)

=\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)

=\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)

=\(\left(x+1\right)^2\left(x^2+1\right)\)

\(x^2+2x-3\)

\(=x^2-x+3x-3\)

\(=x\left(x-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x+3\right)\)

\(2x^2+6x-x-3\)

\(=2x\left(x+3\right)-\left(x+3\right)\)

\(=\left(x+3\right)\left(2x-1\right)\)

a)\(x^2+2x-3=x^2+3x-x-3\) 

                           \(=x\left(x+3\right)-\left(x+3\right)\)

                            \(=\left(x+3\right)\left(x-1\right)\)

6 tháng 10 2018

      \(x^6-x^4+2x^3+2x^2\)

\(=x^2\left(x^4-x^2+2x+2\right)\)

\(=x^2\left[x^4-2x^3+x^2+2x^3-4x^2+2x+2x^2-4x+2\right]\)

\(=x^2\left[x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)\right]\)

\(=x^2\left(x^2-2x+1\right)\left(x^2+2x+2\right)\)

\(=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)