\(x^3-6x^2+11x-6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

x^3 + 6x^2 + 11x + 6 
= x^3 + x^2 + 5x^2 + 5x + 6x + 6 
= x^2(x + 1) + 5x(x + 1) + 6(x + 1) 
= (x + 1)(x^2 + 5x + 6) 
= (x + 1)(x^2 + 2x + 3x + 6) 
= (x + 1)[x(x + 2) + 3(x + 2) 
= (x + 1)(x + 2)(x + 3) 

5 tháng 7 2018

\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

=(x+1)(x+2)(x+3)

3 tháng 9 2015

 ta co: \(F\left(x\right)=x^3-6x^2+11x-6\) 

                        \(=x^3-x^2-5x^2+5x+6x-6\) 

                        \(=x^2\left(x-1\right)-5x\left(x-1\right)+6x\left(x-1\right)\) 

                       \(=\left(x-1\right)\left(x^2-5x+6\right)\) 

                       \(=\left(x-1\right)\left(x^2-2x-3x+6\right)\) 

                       \(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

23 tháng 12 2016

a, \(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2+6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2-1+3x\right)^2\)

b, \(x^4-7x^3+14x^2-7x+1\)

\(=x^4+2x^2+1+7x^3+12x^2-7x\)

\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)

\(=\left(x^2-1+3x\right)^2\)

c, \(12x^2-11x-36\)

\(=12x^2-27x+16x-36\)

\(=3x\left(4x-9\right)+4\left(4x-9\right)\)

\(=\left(4x-9\right)\left(3x+4\right)\)

29 tháng 9 2018

a,   \(x^3+4x^2-29x+24\)

\(=x^3-x^2+5x^2-5x-24x+24\)

\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+5x-24\right)\)

\(=\left(x-1\right)\left[x\left(x-3\right)+8\left(x-3\right)\right]\)

\(=\left(x-1\right)\left(x-3\right)\left(x+8\right)\)

      \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Chúc bạn học tốt.

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

7 tháng 11 2016

a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)

Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3

=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}

b/ Chia F(x) cho x-1

\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)

Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại

16 tháng 10 2020

a) 2x - x3 + 4y - 8y3

= ( 2x + 4y ) - ( x3 + 8y3 )

= 2( x + 2y ) - ( x + 2y )( x2 - 2xy + 4y2 )

= ( x + 2y )( 2 - x2 + 2xy - 4y2 )

b) -3x2 + 11x + 14

= -3x2 - 3x + 14x + 14

= -3x( x + 1 ) + 14( x + 1 )

= ( x + 1 )( 14 - 3x )

16 tháng 10 2020

a) 2x - x3 + 4y - 8y3 

= (2x + 4y) - (x3 + 8y3

= 2 (x + y) - [x3 + (2y)3

= 2 (x + y) - (x + y)(x2 - 2xy + 4y2

= (x + y)( 2 - x2 + 2xy - 4y2)      (Thật sự là câu này mình vẫn chưa chắc chắn lắm =)))

b) -3x2 + 11x + 14 

= -3x2 - 3x + 14x + 14 

= (-3x2 - 3x) + (14x + 14) 

= -3x(x + 1) + 14(x + 1) 

= (-3x + 14)(x + 1)

=))