Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
Đặt x^2 - 3x - 1 = A
\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)
\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)
\(=\left(A-9\right)\left(A-3\right)\)
Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
c)\(x^3-x^2-5x+125\)
\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Mình có việc bận nên chỉ đưa được kết quả ý d) thật lòng mong các bạn tự tham khảo và giải
Đặt \(\begin{cases}f\left(x\right)=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\\\left(x+y+z\right)^2=t\left(1\right)\end{cases}\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=t\)
\(\Leftrightarrow x^2+y^2+z^2=t-2\left(xy+yz+zx\right)\)
\(\Rightarrow f\left(x\right)=\left[t-2\left(xy+yz+zx\right)\right]t+\left(xy+yz+zx\right)^2\)
\(\Rightarrow f\left(x\right)=t^2-2t\left(xy+z+zx\right)+\left(xy+yz+zx\right)^2\)
\(\Rightarrow f\left(x\right)=\left(t-xy-yz-zx\right)^2\)
Thay (1) vào ta được \(f\left(x\right)=\left[\left(x+y+z\right)^2-xy-yz-zx\right]\)
\(f\left(x\right)=\left[x^2+y^2+x^2+xy+yz+zx\right]\)
x 2 - x+ y2 -y - 2xy - 7
= ( x2 - 2xy + y2 ) - ( x + y ) -7
= ( x + y )2 - ( x + y ) -7
= ( x + y ) [ ( x + y ) -7]
= ( x + y ) ( x + y - 7 )
\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)
\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)
\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)
x = y = z
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)
\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(=2^3\)
\(=8\)
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
2x3 + 3x2 + 6x + 5 = 02
<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0
<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0
<=> (2x2 + x + 5)(x + 1) = 0
<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)
<=> x = - 1
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0
<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0
<=> (2x + 5)(2x3 + x2 - 3) = 0
<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0
<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0
<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0
Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)
\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)
Vậy ...
\(x^3-4x^2-12x+27\)
\(=x^3+3x^2-7x^2-21x+9x+27\)
\(=x^2\left(x+3\right)-7x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x^2-7x+9\right)\left(x+3\right)\)
Ta có :
\(x^4+4\)
\(=\left(x^2\right)^2+2.x^2.2+2^2-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)
a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x
Vậy A = 3x + 2 + 5x = 8x + 2
- Khi x < 0 ta có 5x < 0 nên |5x| = -5x
Vậy A = 3x + 2 - 5x = -2x + 2
b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x
Vậy B = -4x - 2x + 12 = -6x + 12
- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x
Vậy B = 4x - 2x + 12 = 2x + 12
c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4
Vậy C = x - 4 - 2x + 12 = -x + 8
d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0
hoặc D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
hoặc D = 2x - 3 khi x < -5
(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)
a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x
Vậy A = 3x + 2 + 5x = 8x + 2
- Khi x < 0 ta có 5x < 0 nên |5x| = -5x
Vậy A = 3x + 2 - 5x = -2x + 2
b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x
Vậy B = -4x - 2x + 12 = -6x + 12
- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x
Vậy B = 4x - 2x + 12 = 2x + 12
c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4
Vậy C = x - 4 - 2x + 12 = -x + 8
d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0
hoặc D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
hoặc D = 2x - 3 khi x < -5
\(=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(-y^2-z^2\right)^3\)
\(=3\left(x^2+y^2\right)\left(z^2-x^2\right)\left(-y^2-z^2\right)=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x+z\right)\left(x-z\right)\)