phân tích đa tử thành nhân tử
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

 x 2 - x+ y2 -y - 2xy - 7

     = ( x2 - 2xy + y2 ) - ( x + y ) -7

     = ( x + y )2 - ( x + y ) -7

     = ( x + y ) [ ( x + y ) -7]

     = ( x + y ) ( x + y - 7 )

6 tháng 10 2016

Ta có :

\(x^4+4\)

\(=\left(x^2\right)^2+2.x^2.2+2^2-\left(2x\right)^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

6 tháng 10 2016

loi giai của bullet đầy trí tuê

5 tháng 10 2016

Đặt \(\begin{cases}f\left(x\right)=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\\\left(x+y+z\right)^2=t\left(1\right)\end{cases}\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=t\)

\(\Leftrightarrow x^2+y^2+z^2=t-2\left(xy+yz+zx\right)\)

 \(\Rightarrow f\left(x\right)=\left[t-2\left(xy+yz+zx\right)\right]t+\left(xy+yz+zx\right)^2\)

\(\Rightarrow f\left(x\right)=t^2-2t\left(xy+z+zx\right)+\left(xy+yz+zx\right)^2\)

\(\Rightarrow f\left(x\right)=\left(t-xy-yz-zx\right)^2\)

Thay (1) vào ta được \(f\left(x\right)=\left[\left(x+y+z\right)^2-xy-yz-zx\right]\)

\(f\left(x\right)=\left[x^2+y^2+x^2+xy+yz+zx\right]\)

25 tháng 11 2016

a+b+c=0

\(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)

thay vào A ta có:

A=a(a+b)(a+c)

= a.(-c).(-b)=abc(1)

B= c(a+c)(b+c)

=c.(-b)(-a)=abc(2)

từ (1)(2)=> abc=abc=> A=B(đfcm)

19 tháng 10 2016

 

đề bài có sai k p?

24 tháng 11 2016

đề bài này lần đầu tiên mik thấy lun đó

2 tháng 10 2016

Ta có :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)

=> Đa thức trở thành 

\(\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Thay vào ta được 

Đt=\(\left(x^2+5x+5\right)^2\)

2 tháng 10 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)                 (1)

Đặt \(x^2+5x+5=t\)  thì (1)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

24 tháng 10 2016

\(x+2\sqrt{2x^2}+2x^3=0\)

\(\Leftrightarrow x+2x\sqrt{2}+2x^3=0\)

\(\Leftrightarrow x\left(1+2\sqrt{2}+2x^2\right)=0\)

\(\Leftrightarrow x=0\) ( Vì \(1+2\sqrt{2}+2x^2>0\) )

 

 

25 tháng 10 2016

Tìm x biết :

\(x+2\sqrt{2}x^2+2x^3=0\)

\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)

\(x\left(1+\sqrt{2}x\right)^2=0\)

TH1 : x=0

TH2 : \(\left(1+\sqrt{2}x\right)^2=0\)

\(1+\sqrt{2}x=0\)

\(x=\frac{-1}{\sqrt{2}}\)

3 tháng 8 2016

\(4x^2+3xy-11y^2=5x^2-x^2-2xy+5xy-10y^2-y^2\)

\(=5\left(x^2+xy+2y^2\right)-\left(x^2+2xy+y^2\right)=5\left(x^2+xy+2y^2\right)-\left(x+y\right)^2\)

Ta có  \(4x^2+3xy-11y^2\) chia hết cho 5

=> \(\left(x+y\right)^2\) chia hết cho 5

Mà 5 là số nguyên tố

=> x+y chia hết cho 5

Mặt khác

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

=> \(x^4-y^4\) chia hết cho 5 (đpcm)