K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

M = (a + b + c)3 - a3 - b3 - c3

= (a + b)3 + c3 + 3(a + b)2c + 3(a + b)c2 - a3 - b3 - c3

= a3 + b3 + c3 + 3a2b + 3ab2 + 3(a + b)c(a + b + c) - a3 - b3 - c3

= 3ab (a + b) + 3c(a + b)(a + b + c)

= 3(a + b)[ab + c(a + b + c)]

= 3(a + b)(ab + bc + ac + c2)

= 3(a + b)[b(a + c) + c(a + c)]

= 3(a + b)(b + c)(c + a)

N = a3 + b3 + c3 - 3abc

= (a + b)3 + c3 - 3ab(a + b) - 3abc

= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)

= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]

= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ca - 2ac - 3bc - 3ab)

= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

NM
26 tháng 7 2021

ta có : 

\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)

nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)

\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)

b. tương tự ta có :

\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)

\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)

c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)

26 tháng 8 2017

Ta có

a3+b3+c3-3abc

=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

15 tháng 8 2018

a3+b3+c3-3abc

=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

27 tháng 8 2018

a) \(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

c)  \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

19 tháng 10 2014

a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có 

a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]

19 tháng 10 2014

mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab

18 tháng 3 2017

cái thứ nhất -3(a+b)(b+c)(c+a)

cái thứ hai 0

18 tháng 3 2017

cái thứ 2 bằng (c+b+a). (a^2+b^2+c^2-ab-ac-ca)

7 tháng 7 2016

a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc

=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)

=(a+b+c)(a2+b2+c2-ac-bc-ab)

27 tháng 9 2019

\(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)\)

\(=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)\)

27 tháng 9 2019

a3+b3+c3−3abca^3+b^3+c^3-3abca3+b3+c3−3abc

=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc

=(a+b)3+c3−(3a2b+3ab2+3abc)=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)=(a+b)3+c3−(3a2b+3ab2+3abc)

=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ac−bc+c2)−3ab(a+b+c)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=(a+b+c)(a2+2ab+b2−acbc+c2)−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ac−bc+c2−3ab)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=(a+b+c)(a2+2ab+b2−acbc+c2−3ab)

=(a+b+c)(a2+b2+c2−ab−ac−ab)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)=(a+b+c)(a2+b2+c2−abacab)

13 tháng 11 2021

\(a^3+b^3-c^3+3abc\)

\(=a^3+3ab.\left(a+b\right)+b^3-c^3-3abc-3ab.\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab.\left(a+b-c\right)\)

\(=\left(a+b+c\right).\left(a^2+ab+b^2-ab-ac+c^2\right)-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)

1 tháng 10 2019

Câu hỏi của Bắp Ngô - Toán lớp 8 - Học toán với OnlineMath

Tham khảo